Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BẠN TỰ VẼ HÌNH NHA
Giải
Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:
a) Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =Stam giác ABC
<=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah <=> (1/2)a.(x+y+z)=(1/2)ah
<=>x+y+z=h không phụ thuộc vào vị trí của điểm M
b) x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ; z2+x2\(\ge\)2zx
=>2.(x2+y2+z2) \(\ge\)2xy+2xz+2yz
=>3.(x2+y2+z2) \(\ge\)x2+y2+z2+2xy+2xz+2yz
=>x2+y2+z2 \(\ge\)(x+y+z)2/3=h2/3 không đổi
Dấu "=" xảy ra khi x=y=z
Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC
\(a.\)Ta có: \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
\(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
\(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm

Câu c có khá nhiều cách giải,nhưng mình trình bày 1 cách thôi nhá :)
Câu c là lấy H đối xừng với B qua M,Kẻ đường thẳng song song với AE vắt EM,AF lần lượt tại V và W ạ

Cách 1: MI//DF
BD⊥FD
Do đó: MI⊥BD
Ta có: MI//DF
=>\(\hat{IMB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{EBM}=\hat{IMB}\)
Xét ΔEBM vuông tại E và ΔIMB vuông tại I có
MB chung
\(\hat{EBM}=\hat{IMB}\)
Do đó: ΔEBM=ΔIMB
=>BI=EM; EB=MI
Xét tứ giác IDFM có
ID//MF
IM//DF
Do đó: IDFM là hình bình hành
=>MF=ID
MF+ME=IB+ID=BD ko đổi
Cách 2:
Ta có: BD⊥AC
MF⊥AC
Do đó: BD//MF
=>ID//MF
Xét tứ giác IDFM có
ID//FM
ID=MF
Do đó: IDFM là hình bình hành
=>IM//DF
mà DF⊥BD
nên IM⊥BD tại I
Xét ΔEBM vuông tại E và ΔIMB vuông tại I có
MB chung
\(\hat{EBM}=\hat{IMB}\left(=\hat{ACB}\right)\)
Do đó: ΔEBM=ΔIMB
=>EM=BI
EM+MF
=BI+ID
=BD không đổi
BD⊥FD
Do đó: MI⊥BD
Ta có: MI//DF
=>\(\hat{I M B} = \hat{A C B}\) (hai góc đồng vị)
mà \(\hat{A B C} = \hat{A C B}\) (ΔABC cân tại A)
nên \(\hat{E B M} = \hat{I M B}\)
Xét ΔEBM vuông tại E và ΔIMB vuông tại I có
MB chung
\(\hat{E B M} = \hat{I M B}\)
Do đó: ΔEBM=ΔIMB
=>BI=EM; EB=MI
Xét tứ giác IDFM có
ID//MF
IM//DF
Do đó: IDFM là hình bình hành
=>MF=ID
MF+ME=IB+ID=BD không đổi.
CHÚC BẠN HỌC TỐT!!! ^^
M=cuc cut
M=cuc cut