Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
=
= -4.
b)
=
=
(2-x) = 4.
c)
=
=
=
=
.
d)
=
= -2.
e)
= 0 vì
(x2 + 1) =
x2( 1 +
) = +∞.
f)
=
= -∞, vì
> 0 với ∀x>0.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x4 – x2 + x - 1) =
x4(1 -
) = +∞.
b) (-2x3 + 3x2 -5 ) =
x3(-2 +
) = +∞.
c)
=
= +∞.
d)
=
=
=
= -1.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Hàm số f(x) = xác định trên R\{
} và ta có x = 4 ∈ (
;+∞).
Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và xn → 4 khi n → +∞.
Ta có lim f(xn) = lim =
=
.
Vậy
=
.
b) Hàm số f(x) = xác định trên R.
Giả sử (xn) là dãy số bất kì và xn → +∞ khi n → +∞.
Ta có lim f(xn) = lim = lim
= -5.
Vậy
= -5.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Từ hệ thức suy ra d' = φ(d) =
.
b) +) φ(d) =
= +∞ .
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.
+) φ(d) =
= -∞.
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.
+) φ(d) =
=
= f.
Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F' và vuông góc với trục chính).
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Hàm số f(x) = xác định khi và chỉ khi x2+ x - 6 ≠ 0 <=> x ≠ -3 và x ≠ 2.
Hàm số f(x) liên tục trên các khoảng (-∞; -3), (-3; 2) và (2; +∞)
+) Hàm số g(x) = tanx + sinx xác định khi và chỉ khi
tanx ≠ 0 <=> x ≠ +kπ với k ∈ Z.
Hàm số g(x) liên tục trên các khoảng ( - +kπ;
+kπ) với k ∈ Z.
=
+
+
(1)
=
+
+
(2)
Nhân (2) với 2 rồi cộng với (1) ta được:
=
+
![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5CLeftrightarrow%20%5Cfrac%7B1%7D%7B3%7D%5Coverrightarrow%7BSC%7D+%5Cfrac%7B2%7D%7B3%7D%5Coverrightarrow%7BAB%7D.)
Vậy
,
,
đồng phẳng.
kiểu này là tự đăng rồi