K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

K
2 tháng 3
- Chứng minh ∆ADE = ∆ABC:
Dùng tiêu chí Cạnh-Góc-Cạnh vì:- \(A B = A D\) (A là trung điểm của BD).
- \(A C = A E\) (A là trung điểm của CE).
- \(\angle B A C = \angle D A E\) (góc đối đỉnh).
- Chứng minh DE // BC:
Vì \(\Delta A D E = \Delta A B C\) (theo C-G-C), nên:
\(\angle A D E = \angle A B C\) và \(\angle D E A = \angle A C B\).
→ DE // BC theo định lý góc đồng vị. - Chứng minh M, A, N thẳng hàng:
M, N lần lượt là trung điểm của DE và BC nên AM là đường trung bình của tam giác lớn. Đường trung bình đi qua trung điểm nối song song với cạnh còn lại nên M, A, N thẳng hàng.

7 tháng 3 2020
Bạn tự vẽ hình nha !
Xét \(\Delta ABC\) và \(\Delta ADE\) có: \(AB=AD\left(gt\right)\), \(AC=AE\left(gt\right)\), \(\widehat{BAC}=\widehat{DAE}\)(đối đỉnh)
\(\Rightarrow\Delta BAC=\Delta DAE\left(c.g.c\right)\)\(\Rightarrow\widehat{ABC}=\widehat{ADE}\) và \(BC=DE\)
Mà M,N là trung điểm của BC,DE suy ra BM=DN
Kết hợp với AB=AD ta suy ra \(\Delta ABM=\Delta ADN\left(c.g.c\right)\)\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) suy ra M,A,N thẳng hàng