Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi MM là trung điểm BCBC
M′M′ là hình chiếu của MM lên dd
⇒MM′//BB′//CC′⇒MM′//BB′//CC′
⇒MM′⇒MM′ là đường trung bình của hình thang vuông BB′C′CBB′C′C
⇒MM′=12(BB′+CC′)⇒MM′=12(BB′+CC′)
Xét ΔAA′G∆AA′G và ΔMM′G∆MM′G có:
ˆA′=ˆM′=90oA′^=M′^=90o
ˆA′AG=ˆMM′GA′AG^=MM′G^ (so le trong)
Do đó ΔAA′G∼ΔMM′G(g.g)∆AA′G∼∆MM′G(g.g)
⇒AA′MM′=AGGM⇒AA′MM′=AGGM
Áp dụng tính chất của trọng tâm, ta có:
AGAM=23AGAM=23
⇒AGGM=2⇒AGGM=2
Do đó: AA′MM′=2AA′MM′=2
⇒AA′=2MM′=2.12(BB′+CC′)=BB′+CC′⇒AA′=2MM′=2.12(BB′+CC′)=BB′+CC′
Vậy AA′=BB′+CC′
![](https://rs.olm.vn/images/avt/0.png?1311)
BẠN TỰ VẼ HÌNH NHA
Giải
Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:
a) Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =Stam giác ABC
<=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah <=> (1/2)a.(x+y+z)=(1/2)ah
<=>x+y+z=h không phụ thuộc vào vị trí của điểm M
b) x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ; z2+x2\(\ge\)2zx
=>2.(x2+y2+z2) \(\ge\)2xy+2xz+2yz
=>3.(x2+y2+z2) \(\ge\)x2+y2+z2+2xy+2xz+2yz
=>x2+y2+z2 \(\ge\)(x+y+z)2/3=h2/3 không đổi
Dấu "=" xảy ra khi x=y=z
Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC
\(a.\)Ta có: \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
\(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
\(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm