Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)gọi trung điểm của AB là H, của BC là I.
xét \(\Delta\) HBD và \(\Delta\) HAD có:
HB=HA
góc BHD= góc AHD=90độ
HD(chung)
suy ra 2 tam giac tren = nhau(c.g.c)
suy ra góc B=góc DAH\(\Rightarrow\) \(\Delta\) ABD là tam giác cân
chứng minh tương tự vs 2 tam giác EAI và ECI(c.g.c)
suy ra góc EAI= góc ECI\(\Rightarrow\) tam giác ACE là tam giác cân
câu b đợi tí mh nghĩ đã
m bị điên à tk 'nhóc quậy phá' ??? Đường trung trực của AB và AC cắt nhau tại I r mak m còn gọi trung điểm của BC là I

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
Hình tự vẽ nhé
Ta có:
D ∈ đường trung trực của AB => BD = DA => ΔABD cân tại D
E ∈ đường trung trực của AC => AE = CE => ΔACE cân tại E
Nối I với A
Vì I ∈ đường trung trực của AB
=> IA = IB
=> ΔABI cân tại I
=> BIA = 180° - 2BAI
Vì I ∈ đường trung trực của AC
=> IA = IC
=> ΔACI cân tại I
=> CIA = 180° - 2 CAI
Ta có:
BIA + CIA = 180° - 2BAI = 180° - 2CAI
=> BIC = 360° - 2BAC
=> BIC = 360° - 2.120
=> BIC = 360 - 240
=> BIC = 120°