Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sơ đồ minh họa:
A B C G D E
\(S_{BCD}=\frac{1}{3}S_{ABC}\) (1) ( Chung chiều cao hạ từ \(C\) xuống \(AB\) và có đáy \(BD=\frac{1}{3}=AB\) do \(AD\) gấp đôi \(DB\) ). \(S_{BCE}=\frac{1}{3}S_{ABC}\) (2) ( Chung chiều cao hạ từ \(B\) xuống \(AC\) và có đáy \(EC=\frac{1}{3}AC\) do \(AE\) gấp đôi \(EC\) ).
Từ (1) và (2) \(\Rightarrow\) \(S_{BCD}=S_{BCE}\)
\(S_{BCD}-S_{BGC}=S_{GDB}\); \(S_{BCE}-S_{BGC}=S_{GEC}\)
Do đó \(S_{GDB}=S_{GEC}\)

Ta nối E với D :
Ta có hình như sau :
B C A D E I
ta thấy hình tam giác ADC =\(\frac{1}{2}\)DEAC
\(\Leftrightarrow\)ADE =\(\frac{1}{2}\)DEAC
\(\Rightarrow\)ADE = ADC
Mà đoạn AD = EC = \(\frac{1}{3}\)
\(\Rightarrow\)AE = DC
\(\Rightarrow\)Tam giác AID = Tam giác CIE
(Bạn Vẽ hình nhé)
Coi S là diện tích
Ta có : AID = 1/3 SABI ( chung chiều cao hạ từ đỉnh I xuống đáy AB , AD = 1/3 AI)
SCIE = 1/3 SBIC (chung chiều cao hạ từ đỉnh I xuống đáy BC, EC = 1/3 BC)
Ta thấy: SAID = SCIE vì SAID = SCIE= 1/3
Vậy kết luận SAID = SCIE
(k vào đúng nếu các bạn thấy hợp lí , k vào sai nếu các bạn thấy thiếu hoặc sai nhé)

Sơ đồ minh họa:
A E D C F B
Ta có:
\(S_{AED}=\frac{1}{2}\times AD\times AE=\frac{1}{2}\times AD\times\left(\frac{1}{4}\times AB\right)\)
\(=\frac{1}{8}\times AD\times AB=\frac{1}{8}\times S_{ABCD}\)
\(S_{BEF}=\frac{1}{2}\times BE\times BF=\frac{1}{2}\times\left(\frac{3}{4}\times AB\right)\times\left(\frac{1}{4}\times BC\right)\)
\(=\frac{3}{32}\times AB\times BC=\frac{3}{32}\times S_{ABCD}\)
\(S_{CDF}=\frac{1}{2}\times CD\times CF=\frac{1}{2}\times CD\times\left(\frac{3}{4}\times CB\right)\)
\(=\frac{3}{8}\times CD\times CB=\frac{3}{8}\times S_{ABCD}\)
Do đó: \(S_{AED}+S_{BEF}+S_{CDF}=\)
\(=\left(\frac{1}{8}+\frac{3}{32}+\frac{3}{8}\right)\times S_{ABCD}\)
\(=\frac{19}{32}\times S_{ABCD}\)
Suy ra:
\(S_{DEF}=S_{ABCD}-\left(S_{AED}+S_{BEF}+S_{CDF}\right)\)
\(=S_{ABCD}-\frac{19}{32}\times S_{ABCD}=\frac{13}{32}\times S_{ABCD}\)
Vậy \(\frac{S_{DEF}}{S_{ABCD}}=\frac{13}{32}\)