K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BCOM có MO//BC

nên BCOM là hình thang

Xét tứ giác BCNO có NO//BC

nên BCNO là hình thang

b: MO//BC

=>\(\widehat{MOB}=\widehat{OBC}\)

=>\(\widehat{MOB}=\widehat{MBO}\)

=>MO=MB

NO//BC

=>\(\widehat{NOC}=\widehat{OCB}\)

=>\(\widehat{NOC}=\widehat{NCO}\)

=>NO=NC

MN=MO+NO

=>MN=MB+NC

23 tháng 9 2018

bạn lm bài này ch. gửi cho mk cách lm vs

23 tháng 9 2018

bài này mk làm 2 năm rồi

4 giờ trước (18:19)

1: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\hat{AMB}=\hat{AMC}\)

\(\hat{AMB}+\hat{AMC}=180^0\) (hai góc kề bù)

nên \(\hat{AMB}=\hat{AMC}=\frac{180^0}{2}=90^0\)

=>AM⊥BC tại M

2: Xét ΔNAD và ΔNCM có

\(\hat{NAD}=\hat{NCM}\) (hai góc so le trong, AD//CM)

NA=NC

\(\hat{AND}=\hat{CNM}\) (hai góc đối đỉnh)

Do đó: ΔNAD=ΔNCM

=>AD=CM

Xét tứ giác AMCD có

AD//CM

AD=CM

do đó: AMCD là hình bình hành

Hình bình hành AMCD có \(\hat{AMC}=90^0\)

nên AMCD là hình chữ nhật