Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC và DE=1/2BC
=>DE//BF và DE=BF
=>BDEF là hình bình hành
mà BF=BD
nên BDEF là hình thoi
b: Xét tứ giác ADCM có
E là trug điểm chung của AC và DM
AC=DM
Do đó; ADCM là hình chữ nhật
c: Xet ΔFMN có
FC là đường trung tuyến
FC=MN/2
Do đó: ΔFMN vuông tại F

Link hình: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1224).png
Áp dụng định lý Menelaus cho bộ ba điểm (K,E,D) thằng hàng của \(\Delta\)AMC, ta được: \(\frac{KM}{KC}.\frac{EC}{EA}.\frac{DA}{DM}=1\Rightarrow\frac{KM}{KC}=\frac{EA}{EC}.\frac{DM}{DA}\)(1)
Tương tự đối với bộ ba điểm (H,D,F) thẳng hàng trong \(\Delta\)AMB, ta được: \(\frac{HB}{HM}.\frac{DM}{DA}.\frac{FA}{FB}=1\Rightarrow\frac{HB}{HM}=\frac{FB}{FA}.\frac{DA}{DM}\)(2)
Tiếp tục áp dụng định lý Ceva cho ba đường thẳng AD, BE, CF đồng quy tại M trong \(\Delta\)ABC, ta có: \(\frac{DC}{DB}.\frac{FB}{FA}.\frac{EA}{EC}=1\Rightarrow\frac{DC}{DB}=\frac{FA}{FB}.\frac{EC}{EA}\)(3)
Từ (1), (2), (3) suy ra \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)
\(\Delta\)BMC có \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)nên ba đường thẳng MD, BK, CH đồng quy (định lý Ceva đảo)
Vậy AD, BK và CH đồng quy (đpcm)

Hinh nhu de sai thi phai ban ah.Ban thu coi lai coi xem co dieu kien nao cua tam giac ABC khong ?