Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Em tự giải
b. Do tam giác ABC đều và AH là đường cao \(\Rightarrow AH\) đồng thời là phân giác góc A
\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{1}{2}\widehat{A}=\dfrac{1}{2}.60^0=30^0\)
AEMHF nội tiếp đường tròn tâm O \(\Rightarrow\widehat{HOF}=2.\widehat{CAH}=60^0\) (góc nội tiếp và góc ở tâm cùng chắn cung HF)
Mà \(OH=OF\) (cùng là bán kính) \(\Rightarrow\Delta OHF\) đều (tam giác cân có 1 góc 60 độ)
Tương tự ta có \(\widehat{HOE}=60^0\Rightarrow\Delta OHE\) đều
\(\Rightarrow OE=OF=HE=HF\Rightarrow OEHF\) là hình thoi
c.
Gọi D là trung điểm AH \(\Rightarrow OD\perp AH\) \(\Rightarrow OH\ge DH\Rightarrow OH\ge\dfrac{1}{2}AH\Rightarrow OH\ge\dfrac{a\sqrt{3}}{2}\)
Gọi I là giao điểm EF và OH \(\Rightarrow I\) là tâm hình thoi OEHF
\(S_{OEHF}=2S_{OHE}=2EI.OH=2\sqrt{OE^2-OI^2}.OH\)
\(=2OH.\sqrt{OH^2-\left(\dfrac{OH}{2}\right)^2}=OH^2\sqrt{3}\ge\left(\dfrac{a\sqrt{3}}{2}\right)^2.\sqrt{3}=\dfrac{3a^2\sqrt{3}}{2}\)
Dấu "=" xảy ra khi \(OH=DH\Leftrightarrow O\) trùng D
\(\Rightarrow M\) trùng H
![](https://rs.olm.vn/images/avt/0.png?1311)
Xin lỗi bạn nha ! Vì lỗi nên mình không vẽ được hình cho bạn ,có j bạn tự vẽ nha !!!
Bài giải
a) AB là tiếp tuyến tại A của ( C)
=> \(\widehat{BAF}=\widehat{AEF}\)
Xét \(\Delta ABF\)và \(\Delta EBA\)có :
\(\hept{\begin{cases}\widehat{ABE}chung\\\widehat{BAF}=\widehat{BEA}\end{cases}\Rightarrow\Delta ABF}\infty\Delta EBA\left(g-g\right)\)
\(\Rightarrow\frac{AB}{BE}=\frac{BF}{AB}\Rightarrow AB^2=BE.BF\)
Xét \(\Delta ABC\) vuông tại A có đường cao AH .
=> AB2 =BH . BC
=> BH . BC = BE . BF ( =AB2 )
Xét \(\Delta BHF\)và \(\Delta BEC\)có :
\(\frac{BH}{BE}=\frac{BF}{BC}\)
\(\widehat{CBE}\)chung
=> \(\Delta BHF\infty\Delta BEC\left(c-g-c\right)\)
=> \(\widehat{BHF}=\widehat{BEC}\)
*) \(\widehat{BHF}+\widehat{FHC}=\widehat{BEC}+\widehat{FHC}\)
\(\Leftrightarrow\widehat{FEC}+\widehat{FHC}=\widehat{BHC}=180^O\)
=> EFHC là tứ giác nội tiếp ( có tổng 2 góc đối =180 o
b) EFHC là tứ giác nội tiếp
=> \(\widehat{EHC}=\widehat{EFC}\)( cùng chắn góc EC )
\(\widehat{FEC}=\widehat{BHF}\)( c/ m cân A )
Mà \(\widehat{FEC}=\widehat{EFC}\)( \(\Delta ECF\)cân ở C )
=> \(\widehat{EHC}=\widehat{BHF}\)
=> 90O \(-\widehat{EHC}=90^O-\widehat{BHF}\)
<=> \(\widehat{EHD}=\widehat{FHD}\)
=> HD là phân giác góc EHF
![](https://rs.olm.vn/images/avt/0.png?1311)
b/ Gọi G là giao điểm của AB và DF
Ta có :
Góc ACQ = góc AHQ ( t/g ACHQ n.t )
Góc ACQ = góc ADF ( 2 góc n.t chắn cung AF )
=> Góc AHQ = góc ADF
Mà 2 góc ở vị trí đồng vị
Nên \(HQ//DF\)
Mặc khác \(HQ\perp AB\)tại Q
=> \(DF\perp AB\)tại G
Xét tứ giác GBNF ta có:\(B\widehat{G}F+B\widehat{N}F=180^0\)
=> Tứ giác GBNF nội tiếp =>\(N\widehat{G}F=N\widehat{B}F\)
Mà \(N\widehat{B}F=C\widehat{A}F\)( tứ giác ACBF n.t (O))
Nên \(N\widehat{G}F=C\widehat{A}F\left(1\right)\)
Xét tứ giác GMAF ta có: \(A\widehat{M}F=A\widehat{G}F\left(=90^0\right)\)
=> Tứ giác GMAF n.t =>\(M\widehat{A}F+M\widehat{G}F=180^0\left(2\right)\)
(1) và (2) => \(N\widehat{G}F+M\widehat{G}F=180^0\)
=> \(\overline{M,G,N}\)
Mà G là giao điểm của AB và DF
Nên MN,AB,DF đồng quy tại G
MN là đường thẳng simson nha bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: MP vuông góc AB (gt)
=) Góc MPA = 90độ (1)
Lại có: MQ vuông góc AC (gt)
=) Góc MQA = 90 độ (2)
Từ (1) và (2) =) góc MPA + góc MQA = 180độ
Mà 2 góc ở vị trí đối nhau
=) Tứ giác APMQ nội tiếp