Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D K E H
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)
Mà \(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)
Do đó: \(\widehat{ABD}=\widehat{ACE}\)
Xét hai tam giác ABD và ACE có:
\(\widehat{BAD}=\widehat{CAE}\) (gt)
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{ABD}=\widehat{ACE}\) (cmt)
Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)
Suy ra: BD = CE (hai cạnh tương ứng)
b) Xét hai tam giác BHD và CKE có:
BD = CE (cmt)
\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))
Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)
Suy ra: BH = CK (hai cạnh tương ứng).
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: góc B = góc C => tam giác ABC cân tại A
Do đó: AB = AC
![](https://rs.olm.vn/images/avt/0.png?1311)
câu bấm vào đây nhé Cho tam giác ABC có góc B=góc C, kẻ AH vuông góc với BC, H thuộc BC. Trên tia đối BC lấy điểm D ,Trên tia đối của tia CB lấy điểm E sao cho BD=CE. Chứng minh :a) AB = ACb) Tam giác ABD = Tam giác ACEc) Tam giác ACD = Tam giác ABEd) AH là tia phân giác của góc DAEe) Kẻ BK vuông góc AD, CI vuông góc AE . Chứng minh ba đường thẳng AH, BK, CI cùng đi qua 1 điểm
![](https://rs.olm.vn/images/avt/0.png?1311)
Đỗ Hương GiangNguyễn Lê Hoàng ViệtNguyễn Huy ThắngNguyễn Huy Tú
Trần Việt LinhVõ Đông Anh TuấnPhương An
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath