Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) S, I, J, G là điểm chunng của (SAE) và (SBD)
b) S, K, L là điểm chung của (SAB) và (SDE)

Nhận xét
Hình thang ABCD có hai cạnh bên và đáy nhỏ bằng nhau và bằng nửa đáy lớn, nên nó là nửa lục giác đều nội tiếp trong đường tròn đường kính AB, tâm O là trung điểm của AB.
Như vậy: ∠(ACB) = ∠(ADB) = 1v.
a) Theo giả thiết, ta có: SA ⊥ (ABCD) ⇒ SA ⊥ BC
BC ⊥ SA & BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC. (1)
Mặt khác SB ⊥ (P) nên SB ⊥ IJ (⊂ (P)) (2)
Từ (1) và (2) suy ra BCJI là tứ giác nội tiếp trong đường tròn đường kính BJ.
Ta có BC ⊥ (SAC) ⇒ BC ⊥ AJ (⊂ (SAC))
AJ ⊥ BC & AJ ⊥ SB (do SB ⊥ (P)) ⇒ AJ ⊥ (SBC) ⇒ AJ ⊥ JI (⊂ (SBC)) (3)
Lý luận tương tự, ta có:
BD ⊥ AD & BD ⊥ SA ⇒ BD ⊥ (SAD) ⇒ BD ⊥ AK (⊂ (SAD))
AK ⊥ BD & AK ⊥ SB(⊂ (P)) ⇒ AK ⊥ (SBD) ⇒ AK ⊥ KI. (4)
Từ (3) và (4) suy ra AKJI nội tiếp trong đường tròn đường kính AI nằm trong mặt phẳng (P).
b) Ta có ngay O’ là trung điểm BJ
Vì OO’ là đường trung bình của ΔABJ nên OO’ // AJ
Mà AJ ⊥ (SBC) nên OO’ ⊥ (SBC)
c) Ta có (SCD) ∩ (ABCD) = CD.
Gọi M = JK ∩ CD
SA ⊥ (ABCD) ⇒ SA ⊥ AM(⊂ (ABCD)) (5)
SB ⊥ (P) ⇒ SB ⊥ AM (⊂ (P)) (6)
Từ (5) và (6), ta có: AM ⊥ (SAB) ⇒ AM ⊥ AB.
Suy ra AM là tiếp tuyến của đường tròn ngoại tiếp ΔABC tại A. Như vậy AM cố định. Vì M = AM ∩ CD nên M cố định.
d) ΔAIB vuông tại I nên OA = OB = OI
ΔAJB vuông tại J (do AJ ⊥ (SBC)) nên OA = OB = OJ).
ΔAKB vuông tại K (do AK ⊥ (SBD)) nên OA = OB = OK).
Ta có OA = OB = OC = OD = OI = OJ = OK nên O là điểm cách đều các điểm đã cho và OA = AB/2 = a.
e) Theo chứng minh câu c.
f) Khi S thay đổi trên d, ta có I luôn nằm trong mặt phẳng (B, d).
Trong mặt phẳng này I luôn nhìn đoạn AB cố định dưới góc vuông nên tập hợp I là đường tròn ( C 1 ) đường kính AB nằm trong mặt phẳng (B, d).
Tương tự, tập hợp J là đường tròn ( C 2 ) đường kính AC nằm trong mặt phẳng (C, d) và tập hợp K là đường tròn đường kính AD nằm trong mặt phẳng (D, d).

a.
Ta có: \(\begin{cases}S\in\left(SAB\right)\cap\left(SCD\right)\\ AB\Vert CD\\ AB\subset\left(SAB\right);CD\subset\left(SCD\right)\end{cases}\)
\(\Rightarrow\left(SAB\right)\cap\left(SCD\right)=Sx\Vert AB\Vert CD\)
b.
Gọi O là giao điểm AC và BD =>O là trung điểm AC và BD
\(O\in AC\subset\left(IAC\right)\Rightarrow IO\subset\left(IAC\right)\)
O là trung điểm BD, I là trung điểm SD =>OI là đường trung bình tam giác SBD
=>OI song song SB
Ta có: \(\begin{cases}C\in\left(IAC\right)\cap\left(SBC\right)\\ OI\Vert SB\\ OI\subset\left(IAC\right);SB\subset\left(SBC\right)\end{cases}\) \(\Rightarrow\left(IAC\right)\cap\left(SBC\right)=Cx\Vert SB\)
Đề bài:
Cho hình chóp \(S . A B C D\) có đáy là hình bình hành.
- Tìm giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\).
- Gọi \(I\) là trung điểm của \(S D\). Mặt phẳng \(\left(\right. I A C \left.\right)\) và mặt phẳng \(\left(\right. S B C \left.\right)\) cắt nhau theo giao tuyến \(C x\). Chứng minh rằng \(C x \parallel S B\).
Phần a) Tìm giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\):
1. Mô tả các mặt phẳng:
- Mặt phẳng \(\left(\right. S A B \left.\right)\) là mặt phẳng chứa các điểm \(S\), \(A\), và \(B\).
- Mặt phẳng \(\left(\right. S C D \left.\right)\) là mặt phẳng chứa các điểm \(S\), \(C\), và \(D\).
2. Tính giao tuyến của hai mặt phẳng:
Hai mặt phẳng này có giao tuyến là một đường thẳng, và để tìm giao tuyến này, ta cần tìm một điểm chung của hai mặt phẳng và một hướng của đường thẳng giao tuyến.
- Mặt phẳng \(\left(\right. S A B \left.\right)\) chứa các điểm \(S\), \(A\), và \(B\).
- Mặt phẳng \(\left(\right. S C D \left.\right)\) chứa các điểm \(S\), \(C\), và \(D\).
Lưu ý rằng điểm \(S\) là chung của cả hai mặt phẳng. Giao tuyến của hai mặt phẳng này sẽ là đường thẳng đi qua điểm \(S\)và vuông góc với các cạnh của đáy \(A B C D\) tại các điểm \(A\), \(B\), \(C\), và \(D\).
Do đáy \(A B C D\) là hình bình hành, các cạnh đối diện của hình bình hành sẽ song song. Do đó, giao tuyến của hai mặt phẳng \(\left(\right. S A B \left.\right)\) và \(\left(\right. S C D \left.\right)\) chính là đoạn thẳng nối giữa hai điểm \(B\) và \(C\) trong không gian.
Kết luận: Giao tuyến của hai mặt phẳng \(\left(\right. S A B \left.\right)\) và \(\left(\right. S C D \left.\right)\) là đoạn thẳng \(B C\).
Phần b) Chứng minh \(C x \parallel S B\):
1. Mô tả các mặt phẳng:
- \(I\) là trung điểm của đoạn \(S D\), nghĩa là \(I\) chia đoạn \(S D\) thành hai phần bằng nhau.
- Mặt phẳng \(\left(\right. I A C \left.\right)\) chứa các điểm \(I\), \(A\), và \(C\).
- Mặt phẳng \(\left(\right. S B C \left.\right)\) chứa các điểm \(S\), \(B\), và \(C\).
Cả hai mặt phẳng này giao nhau tại đường thẳng \(C x\), và chúng ta cần chứng minh rằng đường thẳng \(C x\) song song với \(S B\).
2. Tính chất của các mặt phẳng:
- Mặt phẳng \(\left(\right. I A C \left.\right)\) và mặt phẳng \(\left(\right. S B C \left.\right)\) cắt nhau theo đường thẳng \(C x\).
- Do \(I\) là trung điểm của \(S D\), ta có \(S I = I D\). Vì vậy, \(I\) chia đoạn \(S D\) thành hai phần bằng nhau.
- Mặt phẳng \(\left(\right. I A C \left.\right)\) đi qua \(I\), \(A\), và \(C\), còn mặt phẳng \(\left(\right. S B C \left.\right)\) đi qua \(S\), \(B\), và \(C\).
3. Chứng minh tính song song:
- Ta có thể áp dụng các tính chất về đường thẳng và mặt phẳng song song trong không gian.
- Vì \(I\) là trung điểm của \(S D\), và \(C x\) là giao tuyến của hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\), ta nhận thấy rằng đường thẳng \(C x\) phải song song với đường thẳng \(S B\) do tính chất của các mặt phẳng giao nhau tại điểm \(C x\).
Cụ thể, vì hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\) có một điểm chung là \(C\) và đường thẳng \(C x\) là giao tuyến của chúng, mà mặt phẳng \(\left(\right. S B C \left.\right)\) chứa \(S B\), do đó \(C x\) sẽ song song với \(S B\).
Kết luận: Đường thẳng \(C x\) song song với \(S B\), tức là \(C x \parallel S B\).
Tóm lại:
- Giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\) là đoạn thẳng \(B C\).
- Đường thẳng giao tuyến \(C x\) của hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\) song song với \(S B\), tức là \(C x \parallel S B\).

a: Xét ΔAMB và ΔAMC có
AB=AC
AM chung
MB=MC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nen AM là đường cao
=>a//BC

Bạn @than thien nếu bạn copy từ AI hay ChatGPT thì hãy xem kỹ các ký tự của bài mình, và khuyên bạn là nên hạn chế sopy AI hay ChatGPT thôi !
a: Xét ΔAMB có ME là đường phân giác
nên AE/EB=AM/MB=AM/MC(4)
XétΔAMC có MD là đường phân giác
nên AD/DC=AM/MC(5)
Từ (4) và (5) suy ra AE/EB=AD/DC
b: Xét ΔABC có
AE/EB=AD/DC
nên ED//BC
Xét ΔABM có EI//BM
nên EI/BM=AE/AB(1)
Xét ΔACM có ID//MC
nên ID/MC=AD/AC(2)
Xét ΔABC có
ED//BC
nên AE/AB=AD/AC(3)
Từ (1), (2) và (3) suy ra EI/BM=DI/MC
mà BM=CM
nên EI=DI
hay I là trung điểm của ED