Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tổng các góc trong tam giác là 180 độ
Gọi số đo các góc lần lượt là x,y,z
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
=> x=90; y=60; z=30
Tam giác ABC vuông tại A
D trung điểm AC; DM vuông góc BC => M trung điểm BC
=> AM trung tuyến thuộc cạnh huyền
=> Góc ABM = góc BAM = 60 độ
=> Tam giác ABM đều
Khoan vẽ hình bài này bạn có thể làm xong câu a rồi quay lên trên vẽ hình cho dễ
A B C D M
a)Gọi số đo 3 góc A;B;C của tam giác ABC lần lượt là: x;y;z
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}\) và x+y+z=180 (tổng 3 góc của tam giác)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
Suy ra: \(\frac{x}{3}=30\Rightarrow x=90;\frac{y}{2}=30\Rightarrow y=60;z=30\)
Vậy số đo 2 góc A;B;C lần lượt là : 90o;60o;30o
Câu b đợi mik nghĩ tí
![](https://rs.olm.vn/images/avt/0.png?1311)
A C B D M
Do tổng ba góc trong tam giác bằng 180o mà tam giác ABC có số đo các góc lần lượt tỉ lệ với 3, 2, 1 nên ta có:
\(\widehat{A}=90^o;\widehat{B}=60^o;\widehat{C}=30^o\)
Ta có \(\Delta AMD=\Delta CMD\left(c-g-c\right)\Rightarrow\widehat{MAD}=\widehat{MCD}=30^o\)
\(\Rightarrow\widehat{BAM}=\widehat{BAC}-\widehat{MAD}=90^o-30^o=60^o\)
Xét tam giác ABM có \(\widehat{ABM}=\widehat{BAM}=60^o\Rightarrow\widehat{AMB}=60^o\)
Vậy tam giác ABM là tam giác đều.
![](https://rs.olm.vn/images/avt/0.png?1311)
xét tam giácABM VÀ TAM GIÁC ACM CÓ
AM CHUNG
GÓC AMB=GÓC AMC
A CHUNG
=>TAM GIÁC ABM=TAM GIÁC ACM
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
Tổng các góc trong tam giác là 180 độ
Gọi số đo các góc lần lượt là x,y,z
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
=> x=90; y=60; z=30
Tam giác ABC vuông tại A
D trung điểm AC; DM vuông góc BC => M trung điểm BC
=> AM trung tuyến thuộc cạnh huyền
=> Góc ABM = góc BAM = 60 độ
=> Tam giác ABM đều