Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn tự vẽ hình
a, xét tam giác ABM và tam giác ACM có :
AB=AC (gt)
MB=MC (gt)
AM là cạch chung
suy ra tam giác ABM =tam giác ACN (c.c.c)
b, Vì tam giác ABM = tam giác ACN (câu a)
suy ra góc M1= góc M2 (2 góc tương ứng)
mà M1+M2=180 ( 2 góc kề bù)
suy ra : M1=M2= 90
suy ra AM vuông góc BC
c, Vì tam giác ABM = tam giác ACM (câu a)
suy ra : A1=A2 ( 2 góc tương ứng)
suy ra: AM là phân giác góc BAC
bn vẽ hình giùm mik nha
a) xét tam giác ABM và tam giác ACM có:
AM cạnh chung
BM=MC(M trđ BC)
AB=AC(gt)
Nên tam giác ABM = tam giác ACM(ccc)
b) Từ c/m a có: tam giác ABM=tam giác ACM => góc AMB = góc AMC mà AMB+AMC=180 độ(kề bù)
hay 2.AMB=180 độ => AMB=90 độ => AM vuông BC
c) Có tam giác ABM = tam giác ACM => BAM=CAM kết hợp AM nằm giữa AB và AC => AM p/g BAC
![](https://rs.olm.vn/images/avt/0.png?1311)
tu ke hinh :
a, xet tamgiac MHB va tamgiac MKC co : HM = MK (gt)
CM = MB do M la trung diem cua BC(gt)
goc HMB = goc KMC (doi dinh)
=> tamgiac MHB = tamgiac MKC (c - g - c)
xet tamgiac HMC va tamgiac KMB co : HM = MK (gt)
goc HMC = goc KMB (doi dinh)
MC = MB (cmt)
=> tamgiac HMC = tamgiac KMB (c - g - c)
=> goc CHM = goc MKB
ma goc CHM = 90 do MH | AC (gt)
=> goc MKB = 90
b, MH | AC (gt)
tamgiac ABC vuong tai A (gt) => AB | AC (dn)
2 duong thang nay phan biet
=> HK // AB (dl)
MH | AB (gt)
goc MKB = 90 (cau a) => MK | KB
2 duong thang nay phan biet
=> AC // KB (dl)
goc AHB so le trong HBK
=> goc AHB = goc HBK (tc)
xet tamgiac AHB va tamgiac KBH co : HB chung
goc HAB = 90 = goc HKB do. ...
=> tamgiac AHB = tamgiac KBH (ch - gn)
=> AH = KB (dn)
c, tamgiac HMC = tamgiac KMB (Cau a) => CH = KB
AH = KB (Cau b)
=> CH = HA
xet tamgiacHMC va tamgiac HMA co : HM chung
goc CHM = goc MHA do HM | AC (gt)
=> tamgiacHMC = tamgiac HMA (2cgv)
=> MC = MA (dn)
=> tamgiac MCA can tai M (dn)
a) xét tam giác MHC và tam giác HKB có
MK=MH (GT)
BM=MC(GT)
GÓC M1=GÓC M2 (đối đỉnh)
suy ra tam giác MHC bằng tam giác HKB (c-g-c)
do tam giác MHC bằng tam giác HKB nên góc H bằng góc K= 90 độ
suy ra góc HKB bằng 90độ
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: M là trung điểm BC (gt) => AM là đường trung tuyến
Xét tam giác ABC có AM là đường trung tuyến đồng thời là đường phân giác
=> Tam giác ABC cân tại A (vì trong 1 tam giác, 1 đường mang 2 tên thì là tam giác cân)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình
a) Tớ sửa đề xíu nha Tam giác ABM= tam giác CAM
Xét ...... ( tự làm )
=) Tam giác ABM= tam giác CBM ( c - c - c )
b)
sai đề
c)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có :
B(x)=x2+5 mà x2 luôn > hoặc = 0
và 5>0
=>x2+5 luôn > 0
Vậy đa thức B(x) không có nghiệm
Ta có : B ( x ) = x^2 + 5
Mà x^2 lớn hơn hoặc bằng 0
5 > 0
Suy ra x^2 + 5 > 0
Suy ra đa thức B ( x ) không có nghiệm
- vẽ MH và MK lần lượt vuông góc với AB và AC
- Xét \(\Delta AHM\)vuông tại H và\(\Delta AKM\)vuông tại K có: AM: cạnh chung
\(\widehat{HAM}=\widehat{KAM}\)(vì AM là tia phân giác của \(\widehat{A}\))
\(\Rightarrow\)\(\Delta AHM=\Delta AKM\)(cạnh huyền - góc nhọn)
\(\Rightarrow\)MH = MK (2 cạnh tương ứng)
- Xét \(\Delta BHM\)vuông tại H và\(\Delta CKM\)vuông tại K có: BM = CM ( M là trung diểm của BC)
HM = KM (cmt)
\(\Rightarrow\)\(\Delta BHM=\Delta CKM\)(cạnh huyền - cạnh góc vuông)
\(\Rightarrow\)\(\widehat{B}=\widehat{C}\)(2 góc tương ứng)
Vậy \(\Delta ABC\)cân tại A ( vì có góc B và góc C là 2 góc ở đáy bằng nhau )
Hình vẽ nè bạn
A B C M H K