Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi K1 là giao điểm của AK với BC. Đầu tiên e chứng minh I là trực tâm của Tam Giác AK1B.
chứng minh tam giác AK1B cân tại K1, rồi suy ra K1M vuông góc vowis AB, suy ra I là trực tâm. rồi e làm như bình thường
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.
b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\)
Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)
\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)
\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)
\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)
c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.
\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)
\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)
\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)
e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.
Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)
\(\Rightarrow D\left(-2;-3\right)\)
f) Bạn xem lại đề nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(I\left(\frac{3-11}{2};\frac{2+0}{2}\right)\Rightarrow I\left(-4;1\right)\)
\(G\left(\frac{3+5-11}{3};\frac{2+4+0}{3}\right)\Rightarrow G\left(-1;2\right)\)
\(M\left(-22-5;0-4\right)\Rightarrow M\left(-27;-4\right)\)
\(D\left(3+5--11;2+4-0\right)\Rightarrow D\left(19;6\right)\)
a: M(4;0) là trung điểm của AB
=>\(\left\{{}\begin{matrix}x_A+x_B=2\cdot4=8\\y_A+y_B=2\cdot0=0\end{matrix}\right.\)
N(5;2) là trung điểm của AC
=>\(\left\{{}\begin{matrix}x_A+x_C=2\cdot5=10\\y_A+y_C=2\cdot2=4\end{matrix}\right.\)
P(2;3) là trung điểm của BC
=>\(\left\{{}\begin{matrix}x_B+x_C=2\cdot2=4\\y_B+y_C=2\cdot3=6\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_A+x_B=8\\x_A+x_C=10\\x_B+x_C=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_B-x_C=8-10=-2\\x_B+x_C=4\\x_A+x_C=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_B=-2+4=2\\x_B+x_C=4\\x_A+x_C=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_B=\dfrac{2}{2}=1\\x_C=4-1=3\\x_A=10-3=7\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}y_A+y_B=0\\y_A+y_C=4\\y_B+y_C=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y_B-y_C=-4\\y_B+y_C=6\\y_A+y_B=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y_B=2\\y_B+y_C=6\\y_A=-y_B\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y_B=1\\y_C=6-1=5\\y_A=-1\end{matrix}\right.\)
Vậy: A(7;-1);B(1;1); C(3;5)
b: A(7;-1); P(2;3)
\(AP=\sqrt{\left(2-7\right)^2+\left(3+1\right)^2}=\sqrt{\left(-5\right)^2+4^2}=\sqrt{41}\)
c: A(7;-1)
Tọa độ điểm đối xứng với A qua trục Ox là:
\(\left\{{}\begin{matrix}x=x_A=7\\y=-y_A=1\end{matrix}\right.\)
Tọa độ điểm đối xứng với A qua trục Oy là:
\(\left\{{}\begin{matrix}x=-x_A=-7\\y=y_A=-1\end{matrix}\right.\)
e: E thuộc Ox nên E(x;0)
N(5;2);P(2;3); E(x;0)
\(\overrightarrow{NP}=\left(-3;1\right);\overrightarrow{NE}=\left(x-5;-2\right)\)
Để N,P,E thẳng hàng thì \(\dfrac{x-5}{-3}=\dfrac{-2}{1}\)
=>x-5=6
=>x=11
Vậy: E(11;0)