Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dau bai chac dung roi nhung qua la kho that to nghi mai k ra

Bài 1:
+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o
→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ
+ Gọi CN∩BM=G
+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o
+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o
+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o
+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)
+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)
+ Ta có BC=BD+CD=BN+CM (đpcm)

a.Ta có:
ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o
Lại có :
ˆNIB=ˆIBC+ˆICB
=1/2ˆABC+1/2ˆACB
=1/2(ˆABC+ˆACB)
=1/2(180o−ˆBAC)=60o
NIB^=IBC^+ICB^
=1/2ABC^+1/2ACB^
=1/2(ABC^+ACB^
=1/2(180o−BAC^)=60o
=>ˆNIB=ˆBID
=>ΔNIB=ΔDIB(g.c.g)
=>BN=BD(cmt)
b.Chứng minh tương tự câu a
→CD=CM
→BN+CM=BD+CD=BC→đpcm

a. Theo đề bài ˆB=600B^=600 nên
ˆA+ˆC=1800−600=1200A^+C^=1800−600=1200
Vì ˆA1=ˆA2A1^=A2^ và ˆC1=ˆC2C1^=C2^ nên
ˆA1+ˆC1=12(ˆA+ˆC)=12.1200=600A1^+C1^=12(A^+C^)=12.1200=600
Suy ra ˆAOC=1200AOC^=1200 hay ˆDOE=1200DOE^=1200
Trên cạnh AC lấy điểm K sao cho AE = AK
Hai tam giác AOE và AOK có:
AE = AK
ˆA1=ˆA2A1^=A2^ (giả thiết)
AO là cạnh chung
Vậy ΔAOE=ΔAOKΔAOE=ΔAOK
b. Ta có ΔAOE=ΔAOKΔAOE=ΔAOK nên
OE = OK và ˆAOE=ˆAOKAOE^=AOK^
Mà góc AOE kề bù với góc DOE nên
ˆAOE=1800−ˆDOE=1800−1200=600AOE^=1800−DOE^=1800−1200=600
Suy ra ˆCOK=600COK^=600
Hai tam giác COK và COD có: ˆCOK=ˆCOD=600COK^=COD^=600
OC là cạnh chung
ˆC1=ˆC2C1^=C2^ (giả thiết)
Vậy ΔCOK=ΔCODΔCOK=ΔCOD (g.c.g)
Suy ra OK = OD
Ở trên ta đã có OE = OK
Vậy OE = OK = OD

hình dễ nên tự vẽ
a, xét 2 t.giác vuông ABM và HBM có:
BM cạnh chung
\(\widehat{ABM}\)=\(\widehat{HBM}\)(gt)
=> t.giác ABM=t.giác HBM(cạnh huyền- góc nhọn)
=> AB=BH(2 cạnh tương ứng)
b, ta có: \(\widehat{ABM}\)+\(\widehat{BAM}\)+\(\widehat{AMB}\)=180 độ
=>30 độ+90 độ +\(\widehat{AMB}\)=180 độ
=>\(\widehat{AMB}\)=60 độ mà \(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)
=>\(\widehat{CMD}\)=60 độ
xét t.giác MCD có: \(\widehat{CMD}\)+\(\widehat{MDC}\)+\(\widehat{MCD}\)=180 độ
=>60 độ+ 90 độ+ \(\widehat{MCD}\)=180 độ
=>\(\widehat{MCD}\)=30 độ(1)
Mặt khác \(\Delta\)ABC có:\(\widehat{ABC}\)+\(\widehat{BAC}\)+\(\widehat{ACB}\)=180 độ
=>60 độ+90 độ+\(\widehat{ACB}\)=180 độ
=> \(\widehat{ACB}\)=30 độ(2)
từ (1) và (2) suy ra\(\widehat{BCA}\)=\(\widehat{ACD}\)
c,

b/ Ta có góc BOC=120 độ
=> góc DOC=180-120=60 độ
Mà OP là tia phân giác góc BOC=>góc BOP=góc COP=60 độ
+góc DOC=góc EOB(đối đỉnh)
=> góc EOP=góc POB=60 độ
Xét tam giác BOA và tam giác BOP có:
góc EBO=góc PBO(phân giác góc B)
BO chung
Góc EOB=góc BOP(c/m trên)
=> tam giác BOE=tam giác BOP(g-c-g)
=> OE=OP(cạnh tương ứng) [1]
Xét tam giác DOC và tam giác POC có
POC=DOC=60 độ
OC chung
OCD=OCP(phân giác góc C)
=> tam giác DOC=tam giác POC(g-c-g)
=>OD=OP(cạnh tương ứng) [2]
Từ [1][2] suy ra OE=OP=OD
Từ chứng minh trên suy ra
BE=BP(cạnh tương ứng)
DC=PC(cạnh tương ứng)
=> BE+CD=BC
Phù mệt quá tik nha bà con
Hình học j mak chẳng có hình?
Nhưng thôi mk giải cho! Giải xong nhớ tik nhé!
Ta có góc A=60 độ
=> góc B+góc C=180-60=120 độ
Phân giác góc B cắt góc C tại O
=> góc BOC=180-(120/2)=120 độ
câu b từ từ nhé!
+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o
→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ
+ Gọi CN∩BM=G
+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o
+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o
+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o
+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)
+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)
+ Ta có BC=BD+CD=BN+CM (đpcm)
Nguồn: Chôm