Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi giao điểm của AB vs DH là N; giao điểm của AC vs EH là M
xét tam giác DIN và tam giác HIN = nhau(c.g.c) suy ra IN hay IB là phân giác góc DIH
xét tam giác MKH và tam giác MKE = nhau (c.g.c) suy ra kc là phân giác góc MKE
ta lại có HA là phân giác góc HIK( NA,MA là phân giác góc ngoài)
mà góc AHC=90 độ(gt) suy ra HC là phân giác góc ngoài tam giác HIK tại đỉnh H
mà KC là phân giác góc ngoài tam giác HIK tại đỉnh K
suy ra IC là phân giác góc KIH
mà IB là phân giác góc DIH
góc KIH + góc DIH=180 độ( kề bù) suy ra góc BIC=90 độ
suy ra góc AIC=90 độ
góc AKB cm tương tự = 90 độ
tuy mk ko biết chắc cách giải nhưng mk chắc bạn Đức làm sai rồi!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) trung trực c/m cho nó cách đều 2 mút với vuông góc với BC so sánh 2 mút thì c/m 2 cạnh bằng nhau hay lấy của tam giác cân mà làm
b) cái đó gán vào 2 tam giác đơn giản vậy thôi
c) chứng minh 2 cạnh bằng nhau là được dùng tính chất bắc cầu nếu cần thiết
ngày mai mik giải cho bạn nhé bài này mik bik giải nhưng hôm nay bận rùi!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a: Ta có: D nằm trên đường trung trực của AB
nên DA=DB
hay ΔDAB cân tại D
Ta có: E nằm trên đường trung trực của AC
nên EA=EC
hay ΔEAC cân tại E
b: Vì O nằm trên đường trung trực của AB
nên OA=OB(1)
Vì O nằm trên đường trung trực của AC
nên OA=OC(2)
Từ (1) và (2) suy ra OA=OB=OC
hay (O;OA) đi qua B và C