Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
BẠN TỰ VẼ HÌNH NHA
A)TG DAB VUÔNG CÂN TAI SUY RA DA=AB VÀ DAB=90 ĐỘ
TG EAC VUÔNG TẠI A SUY RA AE=AC VÀ EAC=90 ĐỘ
TA CÓ DAC+BAC=90+BAC=DAC
VÀ EAC+BAC=90+BAC=BAE
TỪ 2 ĐIỀU TRÊN SUY RA DAC=BAE
TG DAC VÀ TG BAE CÓ
DA=AB
DAC=BAE
AC=AE
SUY RA TG DAC=TG BAE (C G C) SUY RA DC=BE VÀ ADC=ABE
GỌI T LÀ GIAO ĐIỂM CỦA DC VÀ BE
TA CÓ ADC+CDB+DBA=90(TG DAB VUÔNG TẠI A)
ABE+CDB+DBA=90
DBT+CDB=90 SUYRA DTE=90 ĐỘ(DO DTE=DBT+CDB)
SUY RA DC VUÔNG GÓC VỚI BE TẢI T
B)TA CÓ
TG MNE=AND(C G C) SUY RA ME=AD MÀ AD=AB(TG DAB VUÔNG CÂN TẠI A) SUY RA ME =AB
TG MNE=AND SUY RA GÓC MEN=ADN
TA CÓ ADN+AED=90 (TG DAE VUÔNG TẠI A)
TỪ 2 DÒNG TRÊN SUY RA MEN+AED=90 NÊN MEA=90 ĐỘ
CMĐ TG ABC=EMA(MDO ME=AB,MEA=BAC=90,EA=AC)(C G C) SUY RA GÓC MAE=BCA
C)GỌI I LÀ GIAO ĐIỂM CỦA MA VÀ BC
TA CÓ MAE+EAC+IAC=180 MÀ EAC=90 ĐỘ SUY RA MAE+IAC=90
MÀ MAE=BCA
TỪ 2 DÒNG TRÊN SUY RA BCA+IAC=90
MÀ IAC+BCA=AIB(GÓC NGOÀI CỦA TG AIC VUÔNG TẠI I)
TỪ 2 ĐIỀU TRÊN SUY RA AIB=90 ĐỘ SUY RA MA VUÔNG GÓC VỚI BC TẠI I
CHỖ NÀO BN KO HIỂU THÌ CỨ HỎI MÌNH NHA
![](https://rs.olm.vn/images/avt/0.png?1311)
b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
B A C D
a ) Áp dụng định lý tổng 3 góc của 1 tam giác , ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-90^o-53^o=37^o\)
b ) Dễ
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : HCK = HBC ( cùng phụ với BKC) (1)
HCB + HBC = 90° ( tổng các góc trong ∆)
BCA + CBA = 90° ( tổng các góc trong ∆)
=> HCB + HBC + BCA + CBA = 180°
Hay HCA + HBA = 180°
Mà HBx + HBA = 180° ( kề bù)
Do đó : HCA = HBx (2)
Mà HBC = HBx ( By là phân giác) (3)
Từ (1)(2)(3) => HCK = HCA
Ta có : HCK = HBC ( cùng phụ với BKC) (1)
HCB + HBC = 90° ( tổng các góc trong ∆)
BCA + CBA = 90° ( tổng các góc trong ∆)
=> HCB + HBC + BCA + CBA = 180°
Hay HCA + HBA = 180°
Mà HBx + HBA = 180° ( kề bù)
Do đó : HCA = HBx (2)
Mà HBC = HBx ( By là phân giác) (3)
Từ (1)(2)(3) => HCK = HCA
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : HCK = HBC (cùng phụ với ^BKC) (1)
HCB+HBC=90* (hai góc nhọn trong tam giác vuông)
BCA+CBA=90* (hai góc nhọn trong tam giác vuông)
Nên HCB+HBC+BCA+CBA=90+90*=180*
Hay HCA+HBA=180*
Mà HBx + HBA=180* (hai góc kề bù)
Do đó HCA=^HBx (2)
Mà HBC=^HBx (do By là phân giác) (3)
Vay từ (1), (2), (3) suy ra HCK = HCA (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\widehat{HCK}=\widehat{HBC}\) ( cùng phụ với \(\widehat{BKC}\) ) ( 1 )
\(\widehat{HCB}+\widehat{HBC}=90^0\) ( 2 góc nhọn trong tam giác vuông )
\(\widehat{BCA}+\widehat{CBA}=90^0\) ( 2 góc nhọn trong tam giác vuông )
Nên : \(\widehat{HCB}+\widehat{HBC}+\widehat{BCA}+\widehat{CBA}=90^0+90^0=180^0\)
Hay : \(\widehat{HCA}+\widehat{HBA}=180^0\)
mà : \(\widehat{HBx}+\widehat{HBA}=180^0\) ( hai góc kề bù )
Do đó : \(\widehat{HCA}=\widehat{HBx}\left(2\right)\)
mà : \(\widehat{HBC}=\widehat{HBx}\) ( do By là tia phân giác ) ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : \(\widehat{HCK}=\widehat{HCA}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
B A C H
a) Vì AH là tia phân giác của góc BAC
=> ABH=\(\frac{ABC}{2}=\frac{90^o}{2}=45^o\)(1)
Ta có: ABH+BAC = ABC
hay 45 +BAC = 90o
=> BAC = 90o - 45o
=> BAC = 45o (2)
Từ (1) và (2) => ABH=BAC=45o
B A C H E D
câu này mik chỉ vẽ đc hình thoy, còn đâu mik k làm đc, hí hí