K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔCAD và ΔCED có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔCAD=ΔCED

Suy ra: DA=DE

2: \(\widehat{CAD}=\widehat{CED}=120^0\)

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

Suy ra: DA=DE

b: Xét ΔDEC vuông tại E và ΔDAF vuông tại A có

DE=DA

\(\widehat{EDC}=\widehat{ADF}\)

Do đó: ΔDEC=ΔDAF

c: \(\widehat{BED}=\widehat{BAD}=90^0\)

\(\widehat{EBD}=\dfrac{90^0-40^0}{2}=25^0\)

\(\widehat{EDB}=90^0-25^0=55^0\)

6 tháng 3 2018

A) XÉT \(\Delta ABC\)

CÓ: \(\widehat{A}+\widehat{AB}C+\widehat{ACB}=180^0\)( ĐỊNH LÍ)

THAY SỐ: \(85^0+40^0+\widehat{ACB}=180^0\)

                                            \(\widehat{ACB}=180^0-85^0-40^0\)

                                          \(\widehat{ACB}=55^0\)

\(\Rightarrow\widehat{A}>\widehat{ACB}>\widehat{ABC}(85^0>55^0>40^0)\)

\(\Rightarrow BC>AB>AC\)( ĐỊNH LÍ)

B)  TA CÓ: \(\widehat{ABC}+\widehat{CBE}=180^0\)( KỀ BÙ)

THAY SỐ: \(40^0+\widehat{CBE}=180^0\)

                                \(\widehat{CBE}=180^0-40^0\)

                                 \(\widehat{CBE}=140^0\)

TA CÓ: \(\widehat{BAC}+\widehat{DAC}=180^0\)(KỀ BÙ)

THAY SỐ: \(85^0+\widehat{DAC}=180^0\)

                              \(\widehat{DAC}=180^0-85^0\)

                            \(\widehat{DAC}=95^0\)

XÉT \(\Delta CBE\)

CÓ: \(\widehat{CBE}=140^0\)

\(\Rightarrow\widehat{CBE}\)LÀ GÓC LỚN NHẤT ( ĐỊNH LÍ)

MÀ CE LÀ CẠNH ĐỐI DIỆN VỚI \(\widehat{CBE}\)

\(\Rightarrow CE\)LÀ CẠNH LỚN NHẤT ( ĐỊNH LÍ)

\(\Rightarrow CE>CB\)( ĐỊNH LÍ) (1)

XÉT \(\Delta ACD\)

CÓ: AC =AD ( GT)

\(\Rightarrow\Delta ACD\)CÂN TẠI A ( ĐỊNH LÍ)

\(\Rightarrow\widehat{D}=\widehat{ACD}\)( TÍNH CHẤT) 

MÀ \(\widehat{D}+\widehat{ACD}+\widehat{CAD}=180^0\)( ĐỊNH LÍ TỔNG 3 GÓC TRONG 1 TAM GIÁC)

\(\Rightarrow\widehat{D}+\widehat{D}+\widehat{CAD}=180^0\)

THAY SỐ: \(2\widehat{D}+95^0=180^0\)

                     \(\widehat{D}=\left(180^0-95^0\right):2\)

                   \(\widehat{D}=42,5^0\)

XÉT \(\Delta BCD\)

CÓ: \(\widehat{D}>\widehat{ABC}\left(42,5^0>40^0\right)\)

\(\Rightarrow CB>CD\)(ĐỊNH LÍ) (2)

TỪ (1) ; (2)  \(\Rightarrow CE>CB>CD\)

MK KẺ HÌNH XẤU LẮM!! NÊN MK KO KẺ ĐÂU, BN KẺ GIÙM MK NHA!!!!!! THANKS

CHÚC BN HỌC TỐT!!!!!!

29 tháng 12 2016

  * Xét tam giác ADB và tam giác ADE, ta có: 
- AB = AE(gt) 
- Góc BAD = góc EAD( do AD là phân giác góc BAC : theo gt) 
- Chung cạnh AD 
=> Tam giác ADB = Tam giác ADE(c-g-c) (1) 
* Từ (1) => Góc ABD= góc AEB( các yếu tố tương ứng) (dpcm)

tk  nha bạn

thank you bạn

(^_^)

29 tháng 12 2016

bạn giải hộ mình phần b,c

a: Xét ΔBAD và ΔBED có

BA=BE

\(\hat{ABD}=\hat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: ΔBAD=ΔBED
=>\(\hat{BAD}=\hat{BED}\)

=>\(\hat{BED}=90^0\)

=>DE⊥BC

mà AH⊥BC

nên AH//DE

c: Ta có: \(\hat{EDC}+\hat{C}=90^0\) (ΔDEC vuông tại E)

\(\hat{ABC}+\hat{C}=90^0\) (ΔABC vuông tại A)

Do đó: \(\hat{EDC}=\hat{ABC}\)

4 tháng 12 2016

đồ ngu

4 tháng 12 2016

Cau b lam ntn nhi