K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

AIB = HBC (2 góc đồng vị, AI // BH)

mà ABH = HBC (BH là tia phân giác của ABC)

=> AIB = ABH

mà ABH = BAI (2 góc so le trong, AI // BH)

=> AIB = BAI

=> Tam giác BAI cân tại B

mà BJ là tia phân giác của ABI của tam giác BAI cân tại B

=> BJ là đường cao của tam giác BAI

=> BJ _I_ AI

Áp dụng định lí Py ta go ta có

BC2=AB2+AC2

=> 122=52+AC2

=> AC2=122-52= 119

=> AC= 

10 tháng 3 2020

Tự vẽ hình nhé ?
a) Xét ∆ABC vuông tại B có :
AB2 + BC2 = AC2 (định lí pi-ta-go)
Mà AB = 5cm (GT), BC = 12cm (GT)
=> 52 + 122 = AC2
=> 25 + 144 = AC2
=> AC2 = 169
=> AC2 = \(\sqrt{169}\)
=> AC = 13cm (đpcm)
b) Xét ∆ABI và ∆AMI có :
AI chung
\(\widehat{BAI}=\widehat{MAI}\) (do AI là tia pg của \(\widehat{BAC}\)(GT))
AB = AM (GT)
=> ∆ABI = ∆AMI (c.g.c) (1)
c) Từ (1) => BI = MI (2 cạnh tương ứng) (2)
Từ (1) => \(\widehat{ABI}=\widehat{AMI}\)(2 góc t.ứng) 
Mà \(\widehat{ABI}=\widehat{HBI}=90^o\)(do AB ⊥ AC (GT))
Ngoặc 2 điều trên
=> \(\widehat{HBI}=\widehat{AMI}=90^o\)(3)
Mà \(\widehat{AMI}+\widehat{CMI}=180^o\)(kề bù)
=> \(\widehat{CMI}=90^o\)(4)
Từ (3), (4) => \(\widehat{HBI}=\widehat{CMI}\)(5)
Xét ∆BIH và ∆MIC có :
\(\widehat{BIH}=\widehat{MIC}\)(đối đỉnh)
BI = MI (Theo (2))
\(\widehat{HBI}=\widehat{CMI}\)(Theo (5))
=> ∆BIH = ∆MIC (g.c.g) (6)
=> IH = IC (2 cạnh t.ứng)
P/s : Không biết có phải bạn chép sai đề không chứ IH không bằng IM nên mình suy ra vậy.
d) Gọi giao điểm của AI và HC là K
Từ (6) => BH = MC (2 cạnh t.ứng)
Mà AB = AM (GT)
      AB + BH = AH
      AM + MC = AC
=> AH = AC (7)
Xét ∆AHK và ∆ACK có :
AK chung
\(\widehat{HAK}=\widehat{CAK}\)(do AI là tia pg của \(\widehat{BAC}\)(GT))
AH = AC (Theo (7))
=> ∆AHK = ∆ACK (c.g.c) (8)
=> HK = CK (2 cạnh t.ứng)
Mà K nằm giữa H và C
=> K là trung điểm của HC (9)
 Từ (8) => \(\widehat{AKH}=\widehat{AKC}\)(2 góc t.ứng)
Mà \(\widehat{AKH}+\widehat{AKC}=180^o\)(kề bù)
=> \(\widehat{AKH}=\widehat{AKC}=180^o:2=90^o\)
=> AK ⊥ HC (đ/n) (10)
Từ (9), (10) => AI là đường tr/trực của HC (đpcm)
Vậy...

29 tháng 7 2017

a) Ta có AI // BH => ^AIB = ^HBC và ^BAI = ^ABH (so le trong).

Mà ^HBC = ^ABH (BH là tia phân giác ^ABC) => ^AIB = ^BAI.

b) Bạn xét hai tam giác ABJ và IBJ.

(Nếu chưa học tam giác bằng nhau thì chứng minh như sau:

Ta thấy BJ và BH là tia phân giác của hai góc kề bù nên ^JBH = 90 độ.

Do AI // BH nên ^BJI = ^JBH = 90 độ => BJ vuông góc với AI.)

9 tháng 8 2017

                  Cũng có thể giải cách này bạn :                    

A C B H J I 1 2 3 1 1

a) Vì AI // BH => cặp góc so le trong bằng nhau

          hay \(\widehat{A1}\) = \(\widehat{B2}\)

          mà \(B2\) = \(\widehat{B1}\) ( BH là tia phân giác)

    Vì AI // BH => cặp góc đồng vị bằng nhau

          hay \(\widehat{B1}\) = \(\widehat{I1}\) 

          =>    \(\widehat{A1}\)\(\widehat{I1}\)

b) Vì BH là tia phân giác của \(\widehat{ABC}\) 

          => \(\widehat{B2}\) = \(\widehat{B1}\) = \(\frac{\widehat{ABC}}{2}\)

   Vì BJ là tia phân giác của \(\widehat{ABI}\) 

          => \(\widehat{B3}\) =  \(\widehat{B4}\)  = \(\frac{\widehat{ABI}}{2}\)

          => \(\widehat{B2}\) + \(\widehat{B3}\) = \(\frac{\widehat{ABC}}{2}\) + \(\frac{\widehat{ABI}}{2}\)

          => \(\widehat{B2}\) + \(\widehat{B3}\) = \(\frac{\widehat{ABC+}\widehat{ABI}}{2}\)

          => \(\widehat{B2}\) + \(\widehat{B3}\) \(\frac{180^0}{2}\) = \(90^0\) ( Vì \(\widehat{ABC}\) và \(\widehat{ABI}\) là 2 góc kề bù)

               hay \(\widehat{HBJ}\) = \(90^0\) 

               Vậy BJ vuông góc BH

                      BH // AI ( gt)

                      BJ vg BH

                   => BJ vg AI

                    

4 tháng 4 2017

Khó quá

17 tháng 7 2017

A B C H E I M N x

a) Vẽ tia đối của BC là Bx. Gọi giao điểm của BI và CE là M. CE giao AB tại N. 

\(\Delta\)ABC cân tại A. H là trung điểm của BC => AH là đường cao của \(\Delta\)ABC => AH\(⊥\)BC.

 Ta có: ^ABH+^EBx=1800-^ABE=900 (1)

\(\Delta\)AHB vuông tại H => ^ABH+^BAH=900 (2)

Từ (1) và (2) => ^EBx=^BAH => 1800-^EBx=1800-^BAH => ^EBC=^BAI

Xét \(\Delta\)ABI và \(\Delta\)BEC:

AB=BE

^BAI=^EBC        => \(\Delta\)ABI=\(\Delta\)BEC (c.g.c) (đpcm)

AI=BC

=> ^BEC=^ABI (2 góc tương ứng) hay ^BEN=^NBM.

\(\Delta\)EBN vuông tại B => ^BEN+^BNE=900. Thay ^BEN=^NBM, ta được:

^NBM+^BNE=900 hay ^NBM+^BNM=900. Xét \(\Delta\)BMN có:

^NBM+^BNM=900 => ^BMN=900 => BI\(⊥\)CE tại M (đpcm).

3 tháng 3 2017

ai giải bài này hộ cái

25 tháng 3 2020

b) Vì AC=2AB

AB=BD

=>AC=AD

Xét tam giác ACE và tam giác ADE có:

AC=AD ( chứng minh trên ) 

^CAE=^EAD ( tính chất phân giác )

AE chung

=> tam giác ACE = tam giác ADE ( c.g.c )

=> ^CEA=^AED ( 2 góc tương ứng )

Mà ^CEA kề bù ^AED

=> ^CEA=^AED=90°

=> AE vuông góc CD

AI và AE là 2 tia trùng nhau

=> AI vuông góc CD

Vì AI vuông góc BM

Mà AI vuông góc CD

<=> BM // CD

Chúc bạn học tốt!

25 tháng 3 2020

Vì mình không tìm được cách gõ góc nên kí hiệu ^ là góc nhé! Mong bạn thông cảm