Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có
BC^2=AB^2+AC^2
=>BC^2=4^2+3^2
=>BC^2=16+9=25
=>BC=căn25=5 (cm)
vậy,BC=5cm
b)Xét tam giác ABC và AED có
AB=AE(gt)
 là góc chung
AC=AD(gt)
=>tam giác ABC=tam giác AED(c-g-c)
Xét tam giác AEB có:Â=90*;AE=AB
=>tam giác AEB vuông cân tại A
Vậy tam giác AEB vuông cân
c)Ta có EÂM+BÂM=90*
mà BÂM+MÂB=90*
=>EÂM=MÂB
mà MÂB=AÊD(cm câu b)
=>EÂM=AÊD hay EÂM=AÊM
xét tam giác EAM có: EÂM=AÊM(cmt)
=>tam giác EAM cân tại M
=>ME=MA (1)
Ta có góc ACM+CÂM=90*
mà BÂM+CÂM=90*
=>góc ACM=BÂM
mà góc ACM=góc ADM( cm câu b)
=>góc ADM=DÂM
Xét tam giác MAD có góc ADM=DÂM(cmt)
=>tam giác ADM cân tại M
=>MA=MD (2)
Từ (1) và (2) suy ra MA=ME=MD
ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền
=>MA=1/2ED
=>MA là đg trung tuyến ứng với cạnh ED
Vậy MA là đg trung tuyến của tam giác ADE
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2
=> BC = 2.AM = 2.41 = 82
Tam giác ABC vuông tại A nên : S ABC = AB.AC/2
Lại có : AH là đường cao nên S ABC = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC = 40.82 = 3280
Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có :
AB^2+AC^2 = BC^2 = 82^2 = 6724
<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284
<=> AB+AC = \(18\sqrt{41}\)
(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164
<=> AC-AB = \(2\sqrt{41}\)( VÌ AC > AB )
=> AB = \(8\sqrt{41}\); AC = \(10\sqrt{41}\)
=> AB/AC = \(\frac{8\sqrt{41}}{10\sqrt{41}}\)= 4/5
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H,M
Vì AH = AM
Nên : tam giác ABC vuôn gân tai jA
Ta có : SABC = 1/2 AH . BC = 1/2 . 12 . 28 = 168 (cm2)
Lại có : SABC = 1/2 AB . AC = 1/2 AB2
Nên : 1/2 AB2 = 168
=> AB2 = 336
=> AB = 18
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H D E 1 2 1 1
Cm: Xét t/giác ABH và t/giác ACH
có : AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
AH : chung
=> t/giác ABC = t/giác ACH (ch - cgv)
=> BH = HC (2 cạnh t/ứng ) => AH là đường cao của t/giác ABC
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng) => AH là đường p/giác của t/giác ABC
Ta có: BH = HC (cmt)
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
=> AH là đừng trung trực của t/giác ABC
b) Ta có: BH = HC = 1/2. BC = 1/2 . 8 = 4 (cm)
Áp dụng t/c của dãy tỉ số bằng nhau vào t/giác ABH vuông tại H , ta có:
AB2 = AH2 + BH2
=> AH2 = AB2 - BH2 = 52 - 42 = 25 - 16 = 9
=> AH = 3
Vậy AH = 3 cm
c) Xét t/giác ADH và t/giác AEH
có : \(\widehat{ADH}=\widehat{AEH}=90^0\) (gt)
AH : chung
\(\widehat{A_1}=\widehat{A_2}\) (gt)
=> t/giác ADH = t/giác AEH (ch - gn)
=> AD = AE (2 cạnh t/ứng)
=> t/giác ADE cân tại A
=> \(\widehat{D_1}=\widehat{E_1_{ }}=\frac{180^0-\widehat{A}}{2}\) (1)
Ta có: AB = AC (gt)
=> t/giá ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-co-ab-6cm-ac-8cm-tu-b-ke-tia-bx-song-song-voi-ac-tia-bx-thuoc-nua-mat-phang-chua-c-bo-ab-tia-phan-giac-cu.155375842620
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M 40 41
\(\Delta AHM\)co:
\(AM^2=AH^2+HM^2\)(AP dung dinh ly Pytago)
\(\Rightarrow41^2=40^2+HM^2\)
\(\Rightarrow HM^2=41^2-40^2=81\)
\(\Rightarrow HM=\sqrt{81}=9\)
Ti so do dai 2 canh goc vuong la:
\(\frac{AH}{HM}=\frac{40}{9}\)
HTDT
\(\Delta ABC\)vuông tại A , trung tuyến AM=41 nên MB=MC=41 ta tính được HM=9,HB=32,HC=50 .Xét \(\Delta ABH\)và \(\Delta ACH\)vuông tại H , ta có :\(^{AB^2=40^2+32^2=2624^2;AC^2=40^2+50^2=4100\Rightarrow\frac{AB^2}{AC^2}=\frac{2624}{4100}=\frac{16}{25}\Rightarrow\frac{AB}{AC}=\frac{4}{5}}\)