Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tam giác DBA đồng dạng với tam giác ABC vì có AB/BD= BC/AB=2 và góc B chung kẹp giữa các cạnh tương ứng --> AC/AD= BC/BA= 2 --> AC= 2AD

Xét ΔDBA và ΔABC có
BD/BA=BA/BC(BD/BM=1/2=BA/BC)
góc B chung
Do đó: ΔDBA đồng dạng với ΔABC
=>AD/AC=BA/BC=1/2
=>AC=2AD

Xét ΔDBA và ΔABC có
BD/BA=BA/BC(BD/BM=1/2=BA/BC)
góc B chung
Do đó: ΔDBA đồng dạng với ΔABC
=>AD/AC=BA/BC=1/2
=>AC=2AD

Xét ΔDBA và ΔABC có
BD/BA=BA/BC(BD/BM=1/2=BA/BC)
góc B chung
Do đó: ΔDBA đồng dạng với ΔABC
=>AD/AC=BA/BC=1/2
=>AC=2AD
Cho tam giác ABC có BC = 2AB. Gọi M là trung điểm của BC và D là trung điểm BM. Chứng minh AC = 2AD.

Xét ΔDBA và ΔABC có
BD/BA=BA/BC(BD/BM=1/2=BA/BC)
góc B chung
Do đó: ΔDBA đồng dạng với ΔABC
=>AD/AC=BA/BC=1/2
=>AC=2AD

Xét ΔDBA và ΔABC có
BD/BA=BA/BC(BD/BM=1/2=BA/BC)
góc B chung
Do đó: ΔDBA đồng dạng với ΔABC
=>AD/AC=BA/BC=1/2
=>AC=2AD

\(\Delta DBA\) đồng dạng với \(\Delta ABC\) vì :
+) AB / BD = BC / AB = 2
+) \(\widehat{B}\) : chung kẹp giữa các cạnh tương ứng
\(\Rightarrow\)AC / AD = BC / BA= 2
\(\Rightarrow AC=2AD\)
Gọi K là trung điểm của AC
Lúc đó: NK là đường trung bình của \(\Delta ABC\Rightarrow NK//BC,NK=\frac{1}{2}BC\)
Từ giả thiết suy ra \(AB=BN=CN\Rightarrow BM=\frac{1}{2}AB\)
Xét \(\Delta AMB\)và \(\Delta CKN\)có:
AB = CN \(\left(=\frac{1}{2}BC\right)\)
\(\widehat{ABM}=\widehat{CNK}\)(\(AB//NK\), đồng vị)
BM = NK \(\left(=\frac{1}{2}AB\right)\)
Suy ra \(\Delta AMB\)\(=\Delta CKN\left(c-g-c\right)\)
\(\Rightarrow AM=CK\)(hai cạnh tương ứng)
Mà \(CK=\frac{1}{2}AC\Rightarrow AM=\frac{1}{2}AC\)
hay AC = 2AM (đpcm)
Bài giải đây. Link ảnh (nếu lỗi): https://i.imgur.com/eTSzE2I.jpg