Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Diện tích tam giác ABC là :
S ABC^2 = (4+5+8)/2 . [(4+5+8)/2-4] . [(4+5+8)/2-5] . [(4+5+8)/2-6]
= 8,5 . 4,5 . 3,5 . 0,5 = 669,375 ( công thức hê-rông rùi bình phương 2 vế lên )
=> S ABC = 25,87228247 (cm2)
Tk mk nha


Sửa đề: \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
ΔAHB vuông tại H
=>\(AB^2=AH^2+HB^2\)
\(AB^2+AC^2=AH^2+HB^2+AH^2+HC^2\)
\(=2\cdot AH^2+HB^2+HC^2\)
\(=2HA^2+\left(HM+MB\right)^2+\left(MC-MH\right)^2\)
\(=2HA^2+\left(HM+MB\right)^2+\left(MB-MH\right)^2\)
\(=2HA^2+HM^2+MB^2+2\cdot HM\cdot MB+HM^2+MB^2-2\cdot HM\cdot MB\)
\(=2HA^2+2\cdot HM^2+2\cdot MB^2=2\cdot\left(HA^2+HM^2\right)+2\cdot MB^2\)
\(=2\cdot AM^2+2\cdot\left(\frac{BC}{2}\right)^2=2\cdot AM^2+2\cdot\frac{BC^2}{4}=2\cdot AM^2+\frac{BC^2}{2}\)

Sửa đề: \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
ΔAHB vuông tại H
=>\(AB^2=AH^2+HB^2\)
\(AB^2+AC^2=AH^2+HB^2+AH^2+HC^2\)
\(=2\cdot AH^2+HB^2+HC^2\)
\(=2HA^2+\left(HM+MB\right)^2+\left(MC-MH\right)^2\)
\(=2HA^2+\left(HM+MB\right)^2+\left(MB-MH\right)^2\)
\(=2HA^2+HM^2+MB^2+2\cdot HM\cdot MB+HM^2+MB^2-2\cdot HM\cdot MB\)
\(=2HA^2+2\cdot HM^2+2\cdot MB^2=2\cdot\left(HA^2+HM^2\right)+2\cdot MB^2\)
\(=2\cdot AM^2+2\cdot\left(\frac{BC}{2}\right)^2=2\cdot AM^2+2\cdot\frac{BC^2}{4}=2\cdot AM^2+\frac{BC^2}{2}\)

a)
Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)
Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)
Trong tam giác ABN vuông tại A, đường cao AG, ta có:
\(AB^2=BG.BN\) (hệ thức lượng)
\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)
Tam giác ABN vuông tại A
\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
Áp dụng đl pytago vào tam giác ABC:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)
Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải