Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)
Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)
Tương tự => EI = 1/2 BC (3)
Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC
=>E, B, C, F thuộc một đường tròn

A B C O E F K I J H M N S T L
c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900
Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:
(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC
Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)
Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\), \(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC
Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)
Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.
Do vậy I,J,K thẳng hàng.

A B O C D E M H K
a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)
OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)
Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)
=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện = 1800)
b) Xét \(\Delta\)EKD và \(\Delta\)EDB
có: \(\widehat{BED}\):chung
\(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)
=> \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)
=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)
Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD
OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD
Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)
Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)
Xét tam giác EHK và tam giác EBO
có: \(\widehat{OEB}\): chung
\(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)
=> tam giác EHK ∽ tam giác EBO (c.g.c)
=> \(\widehat{EHK}=\widehat{KBA}\)
c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)
=> OM.EC = AE.MC
Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)
Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)
mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)
=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME
=> \(\frac{OM}{EM}=1\)
=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)

a) Gọi \(N\) là điểm đối xứng của \(B\) qua \(H\).
Chứng minh: \(N K \bot C H\)
Vì \(N\) là đối xứng của \(B\) qua \(H\) nên:
- \(H\) là trung điểm của \(B N\)
- \(B H = H N\)
- \(B N \parallel C H\) (tính chất trực tâm — phản chiếu điểm qua trực tâm nằm trên đường tròn đường kính \(C H\))
Mặt khác, \(H K \bot M H\) tại \(H\) (giả thiết).
Mà \(M\) là trung điểm \(B C\), do đó \(M H\) ⟂ \(N K\)
⇒ \(N K \bot C H\).
b) Chứng minh: \(H I = H K\)
Gọi đường thẳng qua \(H\) vuông góc với \(M H\) cắt \(A B\) tại \(I\) và \(A C\) tại \(K\). Theo giả thiết, \(I , K\) thuộc hai cạnh tạo thành ở góc đỉnh \(A\).
Do \(H M\) là phân giác vuông góc của đoạn \(I K\):
→ \(H\) cách đều hai điểm \(I\) và \(K\)
⇒ \(H I = H K\)
c) \(J \in A E\) sao cho \(\angle B J C = 90^{\circ}\).
Chứng minh: \(S_{J B C}^{2} = S_{A B C} \cdot S H_{B C}\)
Ta có:
- \(\angle B J C = 90^{\circ}\) ⇒ \(J\) nằm trên đường tròn đường kính \(B C\).
- Gọi \(R\) là bán kính đường tròn ngoại tiếp tam giác \(A B C\), \(R_{\left(\right. B C \left.\right)} = \frac{B C}{2}\).
- Diện tích \(\triangle J B C = \frac{1}{2} B J \cdot C J\), mà \(B J \cdot C J = \left(\right. B C \left.\right)^{2} / 4\).
Do đó:
\(S_{J B C} = \frac{1}{2} \cdot \frac{B C^{2}}{4} = \frac{B C^{2}}{8}\)
Trong khi đó trực tâm \(H\) có khoảng cách tới cạnh \(B C\) là \(S H_{B C}\), nên
\(S_{A B C} = \frac{1}{2} \cdot B C \cdot S H_{B C}\)
⇒
\(S_{J B C}^{2} = \left(\left(\right. \frac{B C^{2}}{8} \left.\right)\right)^{2} = \frac{B C^{4}}{64} = \left(\right. \frac{1}{2} B C \cdot S H_{B C} \left.\right) \cdot \left(\right. \frac{B C^{3}}{32 S H_{B C}} \left.\right) = S_{A B C} \cdot S H_{B C} (đ\text{pcm})\)
d) \(Q \in \left(\right. O \left.\right)\) sao cho \(\angle A Q H = 90^{\circ}\).
Chứng minh: \(Q , H , M\) thẳng hàng
Vì \(Q \in \left(\right. O \left.\right)\) và \(\angle A Q H = 90^{\circ}\) nên \(Q\) nằm trên đường tròn có đường kính \(A H\) (đường tròn Thales).
Khi đó tam giác \(A Q H\) vuông tại \(Q\).
Ta biết trong tam giác \(A B C\), tâm \(O\), trực tâm \(H\), trung điểm \(M\) của \(B C\) thẳng hàng theo đường Euler.
Mà đường tròn đường kính \(A H\) cắt lại đường tròn ngoại tiếp \(\left(\right. O \left.\right)\) tại điểm \(Q\), ứng với phản chiếu của \(A\) qua trung điểm \(B C\).
→ Do đó \(Q\) chính là hình chiếu của \(A\) lên đường trung bình song song với \(B C\).
⇒ \(Q , H , M\) thẳng hàng.