Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
D là điểm đối xứng của C qua B nên \(BC=BD\)
Lại có \(AB=BC=10\left(cm\right)\)
\(\Rightarrow AB=\dfrac{CD}{2}\)
Do đó tam giác ADC vuông tại A
Theo định lí Pitago ta có:
\(AD^2=DC^2-AC^2=20^2-16^2=144\)
\(\Rightarrow AD=12\left(cm\right)\)
Bài 3:
Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MN//PH
Do đó MNPH là hình thang
Xét tg AHC vuông tại H có HN là trung tuyến ứng vs ch AC nên \(HN=\dfrac{1}{2}AC\)
Mà P,M là trung điểm BC,AB nên PM là đtb tg ABC
Do đó \(PM=\dfrac{1}{2}AC\)
Từ đó ta được PM=HN
Vậy MNPH là hình thang cân

a) Để chứng minh tam giác ABC vuông, ta cần chứng minh rằng tổng bình phương hai cạnh góc nhọn bằng bình phương cạnh huyền.
Áp dụng định lý Pythagoras, ta có:
AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100
BC^2 = 10^2 = 100
Vậy AB^2 + AC^2 = BC^2, từ đó ta có thể kết luận rằng tam giác ABC là tam giác vuông tại góc A.
b) Ta có:
- H là chân đường cao từ A xuống BC, nên AH là đường cao của tam giác ABC.
- D là điểm đối xứng với H qua AB, nên AD = AH.
- M là giao điểm của AB và HD, nên AM là trung tuyến của tam giác AHD, do đó AM = MD.
- E là điểm đối xứng với H qua AC, nên AE = AH.
- N là giao điểm của AC và HE, nên AN là trung tuyến của tam giác AHE, do đó AN = NE.
Từ đó, ta có AH = AD = AE và AM = MD, AN = NE.
Vậy ta có thể kết luận rằng AH = MN.
c) Để chứng minh D đối xứng với E qua A, ta cần chứng minh rằng AD = AE và góc DAE = 180 độ.
Ta đã chứng minh trong phần b) rằng AD = AE.
Để chứng minh góc DAE = 180 độ, ta cần chứng minh rằng góc DAB + góc BAE = 180 độ.
Vì tam giác ABC là tam giác vuông tại A (chứng minh trong phần a)), nên góc DAB + góc BAE = 90 độ + 90 độ = 180 độ.
Từ đó, ta có thể kết luận rằng D đối xứng với E qua A.
Đồng thời, F là trung điểm BC, nên AF song song với HD (do D là điểm đối xứng với H qua AB) và AF song song với HE (do E là điểm đối xứng với H qua AC).
Vậy ta có thể kết luận rằng AF vuông góc với MN.

Bạn tự vẽ hình nhé
Ta có: BD=BC(D đối xứng cới C qua B)
mà AB=BC nênAB=DC/2
=>ADC vuông tại A
Áp dụng đl pytago cho tam giác vuông ADC:
AC2+AD2=DC2
=>AD2=DC2-AC2
=>AD2=(BD+BC)2-AC2
=>AD2=202-162
=>AD2=400-256=144
=>AD=12cm

A B C D K I O E
* Giả thiết kết luận bạn tự trình bày nhé
a) Ta có : AO = OC (gt) ( do D đối xứng với E qua O ) \(\widehat{ADC}=90^o\)(gt) . Vậy ADCE là hình chữ nhật
b) ADCE là hình chữ nhật thì AE // DC , AE = DC . Mà DC = BD ( do tam giác ABC cân ) . Suy ra , AE = BD
=> ABDE là hình bình hành . I là trung điểm của AD thì I là trung điểm của BE
c) Áp dụng định lí Py - ta - go cho tam giác vuông ABD
\(AD=\sqrt{AB^2-\left(\frac{BC}{2}\right)^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{\Delta OAD}=\frac{1}{2}S_{ADC}=\frac{1}{2}.\frac{1}{2}.AD.DC=\frac{1}{4}.8.6=12\left(cm\right)\)
d) Tứ giác ABDE là hình bình hành do đó AKDE là hình thang
Để AKDE là hình thang cân thì KD = AE
Mà \(\hept{\begin{cases}KD=\frac{1}{2}AC\\AE=\frac{1}{2}BC\end{cases}\Rightarrow}AC=BC\)
\(\Rightarrow\Delta ABC\)là tam giác đều

a) Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> \(AB^2+AC^2=BC^2\)
=> Tg ABC vuông tại A(định lí Pytago đảo)
b) _D đối xứng với H qua AB(gt)=>DH vuông góc AB hay MH vuông góc AB. Mà AB vuông góc AC =>AC //MH hay AN // MH(1)
_Cm tương tự: AM //HN(2)
_(1),(2)=> Tứ giác AMHN là hình bình hành
Mà ^MAN=90° => AMHN là hcn
=> AH=MN (đpcm)
c) _Nối D với E, A với E
_Tg AHN =tg AEN(c.g.c) => AE=AH(3)
Mà AH=MN(cmt) => MN=AE(4)
(3),(4)=> AMNE là hbh => AE // MN(*); AE=MN(5)
_ Xét tg DEH ta có: M là trung điểm DH; N là trung điểm EH (tích chất đối xứng)
=> MN là đường trung bình của tg DEH
=> MN // DE(**); MN= DE/2(6)
_(*),(**)=> D, A, E thẳng hàng(7)
_(5),(6)=> AE= DE/2 kết hợp với (7)=> A là trung điểm DE
=> D đối xứng với E qua A
mk biết câu trả lời rồi xl đã làm phiền mọi người nha