Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình bạn tự vẽ nhé
a,Trong tam giác cân đường cao ứng vs đỉnh A đồng thời là đường phân giác ứng vs đỉnh đó
=> AH là phân giác của \(\widehat{BAH}\)
Xét \(\Delta ABH\)và\(\Delta ACH\),có:
\(AB=AC\)(vì \(\Delta ABC\)cân tại A)
\(\widehat{BAH}=CAH\)(vì AH là phân giác của \(\widehat{BAH}\))
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)
b,.Xét \(\Delta BAH\)và \(\Delta BED\) có:
\(\widehat{ABH}=\widehat{EBD}\)
\(AB=BE\)
\(DB=BH\)
\(\Rightarrow\Delta BAH=\Delta BED\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAH}=\widehat{BED}\) ( 2 góc tương ứng)
mà 2 góc ở vị trí so le trong
\(\Rightarrow DE//AH\)
c. Xét \(\Delta AHD\) có:
\(\widehat{AHD}=90^o\)
=> DA > AH
mà AH=DE ( \(\Delta BAH=\Delta BED\))
=> DA > DE
Xét \(\Delta DAE\)có:
DA > DE
=> \(\widehat{DEA}>\widehat{DAE}\)
mà \(\widehat{DAE}=\widehat{BAH}\) ( chứng minh câu b )
=> \(\widehat{BAH}>\widehat{DAE}\)
hay \(\widehat{BAH}>\widehat{DAB}\)
câu d,e mik chw lm đc
k mik nhé!
#sadgirl#
a, Xét \(\Delta BAH\)vuông tại H và \(\Delta CAH\)vuông tại H có:
BA = CA ( \(\Delta ABC\)cân ở A )
AH : cạnh chung
\(\Rightarrow\Delta BAH=\Delta CAH\)( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\hept{\begin{cases}HB=HC\\\widehat{BAH}=\widehat{CAH}\end{cases}}\)
=> AH là phân giác góc BAC
b, Xét \(\Delta DBE\)và \(\Delta HBA\)có:
DB = HB ( giả thiết )
\(\widehat{DBE}=\widehat{HBA}\)( 2 góc đối đỉnh )
BE = BA ( giả thiết )
=>\(\Delta DBE\)= \(\Delta HBA\)( c-g-c )
=> \(\widehat{BDE}=\widehat{BHA}\)
Mà 2 góc này so le trong
=> AH // DE
c,
Xét \(\Delta\)AHD có \(\widehat{AHD}=90^o\)
=> DA > AH
mà AH=DE ( \(\Delta DBE=\Delta HBA\))
=> DA > DE
Xét \(\Delta DAE\) có: DA > DE
=> \(\widehat{DEA}>\widehat{DAE}\)
mà \(\widehat{DEA}=\widehat{BAH}\) ( chứng minh câu b )
=> \(\widehat{BAH}>\widehat{DAE}\)
hay \(\widehat{BAH}>\widehat{DAB}\)
d, Vì DB = BH mà BH = CH ( chứng minh câu a )
=> DB = BH = CH
=> DB = \(\frac{1}{2}BC\)hay DB = \(\frac{1}{3}CD\) (1)
Có: D là trung điểm EF
=> CD là đường trung tuyến trong \(\Delta EFC\) (2)
Từ (1) và (2)
=> B là trọng tâm trong tam giác EFC
Mà FG là đường trung tuyến trong \(\Delta EFC\)( do G là trung điểm CE )
=> FG đi qua B
=> 3 điểm F,B,G thẳng hàng

Bn ơi đề này sai :
Cho tam giác abc vuông tại a có ab = 8cm , ac = 15cm , bc =15cm , từ ac kẻ ah vuông góc vs bc. So sánh bh và hc.
tam giác abc vuông tại a => góc a = 90 độ
Vì ac = bc => tam giác abc cân tại c .
tam giác abc cân tại c thì 2 góc ở đáy = nhau => góc a = góc b = 90 độ
=> điều này là vô lý

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
Ta có: \(AB^2-AC^2=AH^2+BH^2-\left(AH^2+CH^2\right)\)
\(=AH^2+BH^2-AH^2-CH^2\)
\(=BH^2-HC^2\)(đpcm)

Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(

Lê Xuân Trường
1-Xét tam giác ABH và tam giác ACH có
Góc AHB = Góc AHC = 90 độ
AC = AB (Do tam giác ABC cân tại A)
Góc ABH = Góc ACH(Do tam giác ABC cân tại A)
Suy ra tam giác ABH = tam giác ACH (cạnh huyền -góc nhọn )
Suy ra BH = CH =3 cm (2 cạnh tương ứng )
2 . Tui không biết làm thông cảm nhe !

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
A C B H
Áp dụng định lý Py-ta-go và tam giác AHB vuông tại H:
=>AH2+HB2=AB2
Áp dụng định lý Py-ta-go vào tam giác AHC vuông ở H:
=>AC2=CH2+AH2
=> AB2-AC2=(AH2+BH2)-(AH2+HC2)
=> AB2-AC2=AH2+BH2-AH2-HC2=BH2-HC2
Vậy AB2-AC2=BH2-HC2
b)
Ta có:AH2+HB2=AB2=>AB2-AH2=HB2
AC2=CH2+AH2=>AC2-AH2=CH2
Lại có:
AC<AB=> AC2<AB2
AH2=AH2
=> AB2-AH2>AC2-AH2
=>BH>HC(dpcm)