Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu a trước
Xét tam giác ABH và tam giác ACH có:
AH là cạnh chung
HB=HC ( H là TĐ của BC)
AB=AC (gt)
do đó :tạm giác ABH = tam giác ACH ( c-c-c)

A B C H K D I
Xét tam giác ABH và tam giác KHC ta có
AH=HK (gt)
BH=HC ( H là trung điểm BC)
góc AHB=góc KHC (=90)
-> tam giác ABH= tam giác KHC (c-g-c)
b)
Xét tam giác ABH và tam giác AHC ta có
AH=AH (cạnh chung)
BH=HC ( H là trung điểm BC)
AB=AC (ggt)
-> tam giác ABH= tam giác AHC (c-c-c)
-> góc AHB= góc AHC (2 góc tương ứng)
mà góc AHB + góc AHC =180 ( 2 góc kề bù)
nên góc AHB + góc ABH=180
->2 góc AHB=180
-> góc AHB =180 :2 =90
=> AH vuông góc BC tại H
c) Xét tam giác BDH và tam giác HAB ta có
BH=BH ( cạnh chung)
góc DBH= góc BHA (=90)
góc DHB= goc1HBA ( 2 góc sole trong và AB//DH)
-> tam giác BDH=tam giác HAB ( g-c-g)
-> DH=AB ( 2 cạnh tương ứng)
d) ta có DH=AB (cmt)
KC=AB ( tam giác AHB= tam giác KHC)
-> DH = KC
ta có góc BAH = góc HKC ( tam giác AHB= tam giác KHC)
mà 2 góc nằm ở vị trí sole trong
nên AB//CK
mặt khác AB//DH (gt)
do đó CK//DH
Xét tam giác DHI và tam giác CKI ta có
HI=IK (I là trung điểm HK)
DH=Ck (cmt)
góc IHD=góc IKC (2 góc sole trong và DH//CK)
-> tam giác DHI= tam giác CKI (c-g-c)
-> góc DHI = góc CIK (2 góc tương ứng
mà góc CIK + góc HIC =180 ( 2 góc kề bù)
nên góc DHI+ góc HIC =180
-> góc DIC =180
-> D,I,C thẳng hàng

a: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D

Câu a: Chứng minh tam giác ABH = tam giác ACH
Ta có tam giác ABC cân tại A, tức là ( AB = AC ).
Điểm ( H ) là trung điểm của đoạn ( BC ), nên ( BH = HC ).
Xét hai tam giác ( ABH ) và ( ACH ):
- ( AB = AC ) (giả thiết tam giác ABC cân tại A).
- ( BH = HC ) (do ( H ) là trung điểm của ( BC )).
- ( \angle ABH = \angle ACH ) (đối đỉnh).
Vậy theo cạnh - góc - cạnh (c.g.c), ta có:
[ \triangle ABH = \triangle ACH ]
Câu b: Chứng minh ( \angle ABM = \angle ACM ) và tam giác MBC cân
- Vì ( M ) nằm trên tia phân giác của góc ( ABC ), ta có: [ \angle ABM = \angle CBM ]
- Mặt khác, do tam giác ( ABH ) và ( ACH ) bằng nhau (chứng minh ở câu a), nên: [ \angle CBM = \angle ACM ] Suy ra:
[ \angle ABM = \angle ACM ] - Xét tam giác ( MBC ):
- ( \angle CBM = \angle BCM ) (do ( M ) nằm trên tia phân giác của ( \angle ABC )).
- ( MB = MC ) (cạnh đối diện hai góc bằng nhau).
Vậy tam giác ( MBC ) cân tại ( M ).
Câu c: Chứng minh ( AB = AN )
- Do đường thẳng đi qua ( A ) song song với ( BC ) cắt tia ( BM ) tại ( N ), ta có:
[ AN \parallel BC ] - Xét tam giác ( ABN ), có ( AN \parallel BC ) nên theo định lý đường trung bình của tam giác, ta có:
[ AB = AN ]
Câu d: Chứng minh ( MC \perp CN )
- Từ câu b, tam giác ( MBC ) cân tại ( M ) nên ( MC = MB ).
- Do ( AN \parallel BC ), nên góc ( MCN ) bằng góc ( NBC ).
- Mà ( \angle NBC = 90^\circ ) (do đường thẳng ( AN ) song song với ( BC )).
- Vậy suy ra ( MC \perp CN ).

xét tam giác amb và tam giác amc có
AB=AC(GT)
BM=MC(GT)
AM CHUNG(GT)
=> TAM GIÁC AMB = TAM GIÁC AMC (CCC)
AI K MK MK K LAI 3 K

A B C M N H D E
a) Xét tam giác ABH và tam giác ACH có:
AB=AC (giả thiết)
BH=HC (vì H là trung điểm của BC)
AH là cạnh chung
=>\(\Delta ABH=\Delta ACH\left(c.c.c\right)\)
b) Theo chứng minh phần a ta có: \(\Delta ABH=\Delta ACH\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 góc tương ứng)
mà \(\widehat{AHB}\) và \(\widehat{AHC}\) kề bù => \(\widehat{AHB}+\widehat{AHC}=180^o\)=> \(\widehat{AHB}=\widehat{AHC}=90^o\)\(\Rightarrow AH⊥BC\)
c) cái này tạm thời chưa nghĩ ra :v