Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> \(AB^2+AC^2=BC^2\)
=> Tg ABC vuông tại A(định lí Pytago đảo)
b) _D đối xứng với H qua AB(gt)=>DH vuông góc AB hay MH vuông góc AB. Mà AB vuông góc AC =>AC //MH hay AN // MH(1)
_Cm tương tự: AM //HN(2)
_(1),(2)=> Tứ giác AMHN là hình bình hành
Mà ^MAN=90° => AMHN là hcn
=> AH=MN (đpcm)
c) _Nối D với E, A với E
_Tg AHN =tg AEN(c.g.c) => AE=AH(3)
Mà AH=MN(cmt) => MN=AE(4)
(3),(4)=> AMNE là hbh => AE // MN(*); AE=MN(5)
_ Xét tg DEH ta có: M là trung điểm DH; N là trung điểm EH (tích chất đối xứng)
=> MN là đường trung bình của tg DEH
=> MN // DE(**); MN= DE/2(6)
_(*),(**)=> D, A, E thẳng hàng(7)
_(5),(6)=> AE= DE/2 kết hợp với (7)=> A là trung điểm DE
=> D đối xứng với E qua A

a: Ta có: D và M đối xứg với nhau qua AB
nên AB là đường trung trực của MD
=>AB vuông góc với MD tại trung điểm của MD
hay E là trung điểm của MD
Ta có: D và N đối xứng với nhau qua AC
nên CA là đường trung trực của DN
=>CA vuông góc với DN tại trung điểm của DN
hay F là trung điểm của DN
Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó:AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
D là trung điểm của BC
DF//AB
Do đó:F là trung điểm của AC
Xét tứ giác ADBM có
E là trung điểm của DM
E là trug điểm của AB
Do đó: ADBM là hình bình hành
mà DA=DB
nên ADBM là hình thoi
Xét tứ giác ADCN có
F là trung điểm của AC
F là trung điểm của DN
Do đó: ADCN là hình bình hành
mà DA=DC
nên ADCN là hình thoi

Hình tự vẽ dc ko ạ =(((( mik vẽ r nhưng lại bị out ra =.= lười lắm ạ
A/ xét tg AEHF ta có : HE vuông góc AB, FA vuông góc AB, HE//AC (gt)
=> góc AEH = góc EAF = góc AFH = 90 độ
=> Tứ giác AEHF là HCN
=>AH=EF
B/ Ta có H đối xứng M qua E => ME=EH
mak EH= AF (hcn) => ME=À
Ta có H đối xứng vs N qua F => FH=FN
mak FH =EA (hcn) => FN=EA
Xét tứ giác MEFA có :
+ ME=AF
+ ME//AF( slt)
=>Tứ giác MEFA là hình bình hành
=>EF=MA,EF//MA (1)
Xét tứ giác EFAN có :
+ FN = EA
+ AE//FN (slt)
=>Tứ giác EFAN là hình bình hành
=>EF=AN.EF//AN(2)
Từ (1) và (2) => MA=AN ; A,M,N thẳng hàng
=> M đối xứng N qua A
Ak quên câu C =.= ko thấy .V
C/Ta có M đối xứng H qua AB
=> AB là đg trung trực
=>MB=HB;MA=HA
Xét tam giác ABM và tam giác HAB có
BM=BH
MA=MH
AB chung
=>tam giác ABM = tam giác HAB (c-c-c)
=) góc M = góc H =90độ
Ta có H đối xứng N qua AC
=> AC là đg trung trực
=>HC=CN;HA=AN
Xét tam giác HCA và Tam giác ACN
HC=CN
HA=AN
AC chung
=>tam giác HCA = Tam giác ACN (c-c-c)
=) góc H= góc N =90 độ
Có CN vuông góc HA vuông góc BM
=> BM//CN
=> MBCN là hình thang mak góc BMN =90 đố => MBCN là hình thang vuông (dpcm)

a) Để chứng minh tam giác ABC vuông, ta cần chứng minh rằng tổng bình phương hai cạnh góc nhọn bằng bình phương cạnh huyền.
Áp dụng định lý Pythagoras, ta có:
AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100
BC^2 = 10^2 = 100
Vậy AB^2 + AC^2 = BC^2, từ đó ta có thể kết luận rằng tam giác ABC là tam giác vuông tại góc A.
b) Ta có:
- H là chân đường cao từ A xuống BC, nên AH là đường cao của tam giác ABC.
- D là điểm đối xứng với H qua AB, nên AD = AH.
- M là giao điểm của AB và HD, nên AM là trung tuyến của tam giác AHD, do đó AM = MD.
- E là điểm đối xứng với H qua AC, nên AE = AH.
- N là giao điểm của AC và HE, nên AN là trung tuyến của tam giác AHE, do đó AN = NE.
Từ đó, ta có AH = AD = AE và AM = MD, AN = NE.
Vậy ta có thể kết luận rằng AH = MN.
c) Để chứng minh D đối xứng với E qua A, ta cần chứng minh rằng AD = AE và góc DAE = 180 độ.
Ta đã chứng minh trong phần b) rằng AD = AE.
Để chứng minh góc DAE = 180 độ, ta cần chứng minh rằng góc DAB + góc BAE = 180 độ.
Vì tam giác ABC là tam giác vuông tại A (chứng minh trong phần a)), nên góc DAB + góc BAE = 90 độ + 90 độ = 180 độ.
Từ đó, ta có thể kết luận rằng D đối xứng với E qua A.
Đồng thời, F là trung điểm BC, nên AF song song với HD (do D là điểm đối xứng với H qua AB) và AF song song với HE (do E là điểm đối xứng với H qua AC).
Vậy ta có thể kết luận rằng AF vuông góc với MN.