Cho tam giác ABC, có AB = 6cm, AC = 8cm, BC = 10cm. Q là hình chiếu của A trên cạn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 giờ trước (21:14)

a: (x-2)(x+3)>0

TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)

TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)

=>x<-3

b: (2x-1)(-x+1)>0

=>(2x-1)(x-1)<0

TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)

=>\(\frac12

TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)

=>x∈∅

c: (x+1)(3x-6)<0

=>3(x+1)(x-2)<0

=>(x+1)(x-2)<0

TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1

TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)

=>x∈∅

MT
16 giờ trước (21:54)
L Nguyễn Lê Phước Thịnh dùng chat


c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

22 tháng 4 2016

a) tam giác ABC vuông tại A

\(\Rightarrow\) AB^2 + AC^2 = BC ^2

<=> 6^2 + 8^2 = BC^2

<=> BC^2 = 100

<=> BC = CĂN 100

<=> BC = 10 ( cm)

B ) Xét tam giác vuông BDA và tam giác vuông BDH :

ABD = HBD

BD là cạnh chung

Vậy hai tam giác bằng nhau

<=> AB = BH

22 tháng 4 2016

a) tam giác ABC vuông tại A

 AB^2 + AC^2 = BC ^2

<=> 6^2 + 8^2 = BC^2

<=> BC^2 = 100

<=> BC = CĂN 100

<=> BC = 10 ( cm)

B ) Xét tam giác vuông BDA và tam giác vuông BDH :

ABD = HBD

BD là cạnh chung

Vậy hai tam giác bằng nhau

<=> AB = BH

3 tháng 3 2018

a)\(\Delta ABH\) vuông tại H có:

BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)

=> BH=5 cm

BC=BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có:

AH2 + HC2 =AC2 ( đl Pytago)

=> AC2 =122 + 162 =20 cm

b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL  Pytago)

=> BH2 =AB2 - AH2 =132 - 122 =25

=> BH=5 cm

BC= BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)

=> AC2 = 122 + 162 =400

=> AC= 20 cm 

https://olm.vn/hoi-dap/detail/86239356392.html