Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn tự vẽ hình nha!!!!!!!!!!
a) xét đg tròn (o) có: góc AIB = 90 độ ( góc nt chắn nửa đg tròn) => góc KIB =90 độ
có góc MHB = 90 độ( MN vuông góc vs AB) => goc KHB = 90 độ
xét tg BHKI ta có: góc KHB = 90 độ ( cmt)
góc KIB = 90 độ (cmt)
==> góc KHB + góc KIB = 90 + 90 = 180 độ
mà 2 góc KHB và góc KIB ở vị trí đối nhau ==> tg BHKI nt( tổng 2 góc đối = 180 độ)
b) từ tg BHKI nt (cma) => góc CKI = góc IBH ( góc ngoài tại đỉnh K = góc trong của đỉnh đối diện B)
=> góc CKI = góc CBH ( I thuộc CB)
xét tam giác CIK và tam giác CHB ta có: góc C chung
góc CKI = góc CBH ( ctm)
==> tam giác CIK đồng dạng vs tam giác CHB (g.g)
=> \(\frac{CI}{CK}=\frac{CH}{CB}\)( tỉ số đồng dạng)
==> CI . CB= CK. CH ( đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4: Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Các đường cao BD và CE của tam giác ABC cắt nhau tại H (D thuộc AC, E thuộc AB).
a) Chứng minh BCDE là tứ giác nội tiếp
b) Đường thẳng OA cắt đường tròn (O) tại điểm thứ hai là M. Chứng minh BM = CH
c) Giả sử , AB = x. Tính diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB theo a và x.