Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình nha
a) Xét tam giác AMB và tam giác AMC có:
AM chung
góc BAM = góc CAM ( AM là tia p.g góc BAC )
AB=AC(gt)
=> tam giác AMC = tam giác AMC (c-g-c) Đpcm
b) Vì AB=AC => tam giác ABC cân tại A, mà AM là tia phân giác của góc A => M là trung điểm BC
Xét tam giác AMB và tam giác DMC có
AM=DM (gt)
AMB=DMC ( đối đỉnh )
BM=CM ( M là trung điểm BC )
=> tam giác AMB = tam giác DMC (c-g-c)
=> góc BAM = góc CDM ( 2 góc tương ứng )
mà góc BAM và góc CDM ở vị trí so le trong
=>AB // CD
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình được ko? Mình ko làm được phần c đâu nhé!
a) Xét \(\Delta AMBvà\Delta CMDcó:\)
AM=MC
góc AMB=góc DMC
BM=MD
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Xét \(\Delta ADMvà\Delta BMCcó:\)
AM=MC
góc AMD=góc DMC
BM=MD
\(\Rightarrow\Delta ADM=\Delta CBM\left(c-g-c\right)\)
\(\Rightarrow\)góc DAM=góc BCM (cặp góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AD//BC
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M D
*Xét ΔABM và ΔACM có:
\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)
⇒ ΔABM = ΔACM (c - c - c)
*Vì ΔABM = ΔACM (cmt)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CD![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có hình vẽ:
A B C M D E F
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
a) ta có AB=AC
=> TAM GIÁC ABC CÂN TẠI A
=> B=C
XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ
AB = AC(GT)
B = C (CMT)
BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)
=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)
B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)CÓ
\(BM=MC\left(GT\right)\)
\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)
\(MA=ME\left(GT\right)\)
\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)
\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AC//BE\)