Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác ABC là tam giác đều?
Nếu ABC đều thì \(\left|\overrightarrow{BM}\right|=BM=\dfrac{a\sqrt{3}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Theo BĐT Bunhiacopxky ta có:
$M^2=(\sin A+\sqrt{3}\cos A)^2\leq (\sin ^2A+\cos ^2A)(1+3)=1.4=4$
$\Rightarrow -2\leq M\leq 2$
Do đó $M$ không thể nhận giá trị $2\sqrt{3}$ vì $2\sqrt{3}>2$
Đáp án C.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)
\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)
\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)
\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)
Ta có:
\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều
![](https://rs.olm.vn/images/avt/0.png?1311)
`a)` Vì `AM` là đường trung tuyến của `\triangle ABC`
`=>M` là trung điểm của `BC`
`=> M ( 1 ; -2 )`
Ta có: `\vec{AM} = ( -1 ; -2 )`
`=>\vec{n_[AM]} = ( 2 ; -1 )`
Mà `A ( 2 ; 0 ) in AM`
`=>` Ptr đường trung tuyến `AM` là: `2 ( x - 2 ) - ( y - 0 ) = 0`
`<=> 2x - y - 4 = 0`
________________________________________________________
`b)` Ta có: `\vec{AC} = ( -2 ; -1 )`
Gọi ptr đường thẳng vuông góc với `AC` là `\Delta`
`=>` Ptr `\Delta` là: `-2x - y + c = 0`
`d ( B , \Delta ) = \sqrt{5}`
`=> [ | -2 . 2 - (-3) + c | ] / \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}`
`<=> | c - 1 | = 5`
`<=> c = 6` hoặc `c = -4`
`=>` Ptr `\Delta` là: `-2x - y + 6 = 0`
hoặc `-2x - y - 4 = 0`
1.
Gọi $L$ là giao $BM, CN$ thì $L$ là trọng tâm tam giác $ABC$.
Áp dụng công thức đường trung tuyến:
$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}$
$CN^2=\frac{a^2+b^2}{2}-\frac{c^2}{4}$$BL^2=\frac{4}{9}BM^2=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2$
$NL^2=\frac{1}{9}CN^2=\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$
Theo cong thức Pitago:
$BN^2=BL^2+NL^2$
$\Rightarrow \frac{c^2}{4}=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2+\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$
$\Rightarrow $5a^2=b^2+c^2$ hay $b^2+c^2=45$
Áp dụng công thức cos:
$a^2=b^2+c^2-2bc\cos A=b^2+c^2-\sqrt{3}bc$
$\Rightarrow 9=45-\sqrt{3}bc\Rightarrow bc=12\sqrt{3}$
$S_{ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}.12\sqrt{3}.\sin 30=3\sqrt{3}$
Đáp án A.
$b=
2.
\(R_{ABC}=\frac{abc}{4S_{ABC}}=\frac{3bc}{4S}=\frac{3.12\sqrt{3}}{4.3\sqrt{3}}=3\)
Đáp án B.