Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABM và ΔACN có
\(\widehat{ABM}=\widehat{ACN}\)
AB=AC
góc A chung
Do đó: ΔABM=ΔACN
2: Xét ΔBMC và ΔCNB có
BM=CN
BC chung
MC=NB
Do đó: ΔBMC=ΔCNB

`@` `\text {Ans}`
`\downarrow`
`1)`
Vì `\Delta ABC` cân tại A.
`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$
Xét `\Delta ABM` và `\Delta ACN`:
`\text {AB = AC}`
$\widehat {A} \text { chung}$
$\widehat {ANC} = \widehat {AMB} (=90^0)$
`=> \Delta ABM = \Delta ACN (ch-gn)`
`2)`
Xét `2 \Delta` vuông `BMC` và `CNB`:
$\widehat {B} = \widehat {C}$
`\text {BC chung}`
`=> \Delta BMC = \Delta CNB (ch-gn)`
`3)`
Vì `\Delta BMC = \Delta CNB (b)`
`-> \text {BN = CM (2 cạnh tương ứng)}`
Ta có: \(\left\{{}\begin{matrix}\text{AB = AN + NB}\\\text{AC = AM + MC}\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BN = CM}\end{matrix}\right.\)
`-> \text {AM = AN}`
Xét `\Delta AMN`:
`\text {AM = AN}`
`-> \Delta AMN` cân tại A.
`4)`
Kẻ đường cao AI
Vì AI đi qua MN
`-> \text {AI} \bot \text {MN}`
Ta có: \(\left\{{}\begin{matrix}\text{AI }\bot\text{ MN}\\\text{AI }\bot\text{ BC}\end{matrix}\right.\)
`@` Theo tiên đề euclid
`-> \text {MN // BC}`
Hoặc bạn có thể giải cách này
Vì `\Delta AMN` cân tại A
\(\rightarrow\widehat{\text{AMN}}=\widehat{\text{ANM}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(1)`
Vì `\Delta ABC` cân tại A
\(\rightarrow\widehat{\text{ABC}}=\widehat{\text{ACB}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(2)`
Từ `(1)` và `(2)`
`->` \(\widehat{\text{ABC}}=\widehat{\text{ANM}}\)
Mà `2` góc này ở vị trí sole trong
`-> \text {MN // BC (t/c 2 đt' //).}`
1: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
góc BAM chung
=>ΔABM=ΔACN
2: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
góc NBC=góc MCB
=>ΔNBC=ΔMCB
3: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
4: AM/AC=AN/AB
=>MN//BC

\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)
\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)
mà ABC= ACB(t/g ABC cân A)
\(\rightarrow ABM=ACN\)
Xét t/g ABM và t/g ACN
Có ^BAC chung
AC= AB(t/g ABC cân A)
^ABM= ^ACN(cmt)
\(\rightarrow\)t/g ABM = t/g ACN(gcg)

Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Mình xin phép sửa đề:
Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G
Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN
`------`
\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)
\(\text{CM | BM = CN}\)
\(\text{BM là đường trung tuyến}\)
`->`\(\text{MA = MC (1)}\)
\(\text{CN là đường trung tuyến}\)
`->`\(\text{NA = NB (2)}\)
`\Delta ABC` cân tại A
`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
`->`\(\text{NA = NB = MA = MC}\)
Xét `\Delta ABM` và `\Delta ACN`:
\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)
`=> \Delta ABM = \Delta ACN (c-g-c)`
`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

A B C G M N
vì tgiac ABC cân tại A
có BM và CN là trung tuyến=> AM=MC=AN=NB
a, xét tgiac BMC và tgiac CNB có:
BC là cạnh chung
góc B= góc C(gt)
BM=CN(cmt)
vậy tgiac BMC=Tgiac CNB(c.g.c)
b. xét tgiac AMN có AM=AN(cmt)
=> tgiac AMN cân tại đỉnh A
ta lại có tgiac ABC cân tại A
Vậy góc ANM= góc ABC= (180-góc A):2
mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC
c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC
mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC
mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)
1: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
2: XétΔBMC vuông tại M và ΔCNB vuông tại N có
BC chung
BM=CN
Do đó: ΔBMC=ΔCNB