Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB

tên các điểm bn tự đặt nha
a) ta có CK // HB ( do cùng vuông góc với AC)
CH// BK (do cùng vuông góc với AB)
tứ giác BKCH có CK // HB ,CH// BK => BKCH là hbh
b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)
A+K = 90
K= 30
c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK
d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM
tam giác AKH có AH//OM, KM=MH =>AO=OK (1)
từ O kẻ OS sao cho SA=SB
tam giác AKB có SA=SB, AO=OK => OS//BK
lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC
=> OA=OB=OC(2)
từ 1 và 2 => OA=OB=OC=OK

Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD

Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

hướng dẫn ý c: Chứng minh tam giác AHC đồng dạng tam giác MBE (gg) suy ra AC/ME=CH/BE mà BE=BC/2; AC=2.DE (DE là đường trung bình tam giác ABC)
suy ra 2.DE/ME= CH/(BC/2) suy ra DE/ME=CH/BC
lại có NH//MB suy ra CH/BC=CN/CM (thales)
suy ra DE/ME=CN/CM suy ra DN//CE (thales đảo) suy ra DN//HB ; D là trung điểm AB suy ra N là trung điểm AH

Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét tứ giác AGCK có
N là trung điểm chung của AC và GK
=>AGCK là hình bình hành
=>CK//AG
mà AG\(\perp\)BC
nên CK\(\perp\)CB
c: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
AH,BN là các đường trung tuyến
AH cắt BN tại G
Do đó: G là trọng tâm của ΔABC
=>BG=2GN
mà GK=2GN
nên BG=GK
=>G là trung điểm của BK
Xét ΔKBC có
CG,KH là các đường trung tuyến
CG cắt KH tại I
Do đó: I là trọng tâm của ΔKBC
d: Vì G là trọng tâm của ΔABC
nên GA=2GH
BC+AG=2CH+2GH=2(CH+GH)
Xét ΔABC có
G là trọng tâm
M là trung điểm của AB
Do đó: CG=2GM
=>GM=1/2CG
mà \(\dfrac{1}{2}CG< \dfrac{1}{2}\left(CH+GH\right)=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot\left(BC+AG\right)=\dfrac{1}{4}\left(BC+AG\right)\)
nên \(GM< \dfrac{1}{4}\left(BC+AG\right)\)
có hình khum vậy???