Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tự vẽ hình
Xét tam giác BDC và tam giác CEB có :
\(\widehat{B}=\widehat{C}\)( t/c của tia phân giác )
BC cạnh chung
\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )
=> tam giác BDC = tam giác CEB ( g.c.g )
=> BD = CE ( 2 cạnh tương ứng )
b) Xét tam giác BEI và tam giác CDI có :
\(\widehat{I_1}=\widehat{I_3}\)( 2 góc đối đỉnh )
BD = CE ( cmt)
\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )
=> tam giác BEI và tam giác CDI ( g.c.g )
=> BI = IC ( 2 cạnh tương ứng )
=> tam giác BIC cân ở I ( đpcm )
Xét \(\Delta BDC\) và \(\Delta CEB\) có :
\(\widehat{B}=\widehat{C}\)(tính chất của tia phân giác)
BC chung
\(\widehat{E}=\widehat{D}=90^o\)
\(\Rightarrow\Delta BDC=\Delta CEB\left(g-c-g\right)\)
=> BD = CE ( 2 cạnh tương ứng )
b. Xét \(\Delta BEI\) và \(\Delta CDI\) có :
\(\widehat{I_1}=\widehat{I_3}\)(2 góc đối đỉnh)
BD = CE(câu a)
\(\widehat{E}=\widehat{D}=90^o\)
=> \(\Delta BEI=\Delta CDI\left(g.c.g\right)\)
=> BI = IC ( 2 cạnh tương ứng )
=> tam giác BIC cân ở I ( đpcm )

a) xét 2 tam giác vuông ABD và ACE có:
AB=AC(gt)
\(\widehat{A}\)chung
=> tam giác ABD=tam giác ACE(CH-GN)
b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE
=> tam giác AED cân tại A
c) ta thấy H là trực tâm của tam giác cân ABC
=> \(\widehat{BAH}\)=\(\widehat{CAH}\)
gọi O là giao điểm của AH và ED
xét tam giác AOE và tam giác AOD có:
AE=AD(tam giác AED cân)
\(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)
AO chung
=> tam giác AOE=tam giác AOD(c.g.c)
=> OE=OD=> O là trung điểm của ED(1)
\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)
từ (1) và (2) => AH là trung trực của ED
A B C D E H O
a) Xét tam giác ABD và tg ACE có:
D^ = E^ = 90độ (gt)
A là góc chung
AB = AC ( do tam giác ABC cân tại A)
=> tam giác ABD = tam giác ACE (ch-gn)
b) Vì AD = AE ( tg ABD = tg ACE)
=> tg AED cân tại A.
c) Vì AD = AE (cmt)
=> A thuộc đường trung trực của ED.
Xét tg AEH và tg ADH có:
E^ = D^ = 90độ (gt)
AD = AE (cmt)
AH cạnh huyền chung.
=> tg AEH = tg ADH (ch-cgv)
=> HE = HD.
=> H thuộc đường trung trực của ED.
=> AH là đường trung trực của ED.