Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đó sẽ là hình thang cân DECB.
Trong bài tập này có 2 điều bạn phải làm rõ được:
DE // BC và DC = BE.
Chúng ta sẽ cùng làm từng điều một:
- DE // BC:
Giả thiết cho tam giác ABC cân A => AC = AB.
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc
=> góc ADE = ACB => DE // BC.
Còn phần còn lại bạn tự làm

Đó sẽ là hình thang cân DECB.
Trong bài tập này có 2 điều bạn phải làm rõ được:
DE // BC và DC = BE.
Chúng ta sẽ cùng làm từng điều một:
- DE // BC:
Giả thiết cho tam giác ABC cân A => AC = AB.
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc
=> góc ADE = ACB => DE // BC.
học tốt nhé cậu

Xét tứ giác BCDE có
A là trung điểm của EC
A là trung điểm của BD
Do đó: BCDE là hình bình hành
mà \(\widehat{EDC}=90^0\)
nên BCDE là hình chữ nhật

kham khảo nha
Câu hỏi của Tsumi Akochi - Toán lớp 8 | Học trực tuyến
vào thống kê hỏi đáp có màu xanh ở câu trả lời này ấn zô dố sẽ được
hc tốt

a: Xét ΔABC và ΔADE có
\(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)
\(\widehat{BAC}=\widehat{DAE}\)
Do đó: ΔABC\(\sim\)ΔADE
Suy ra: \(\widehat{ABC}=\widehat{ADE}\)

2, vì AB=AD nên tam giác ABD cân tại A=> Góc ADB=góc ABD=(180-110)/2=35 độ.
lại có góc BDC= góc ABD=35 độ(2 góc so le =>trong)
=> góc ADB= gócBDC=35độ => DB là phân giác góc D
ta có góc ADC= góc ADB+góc BDC=35.2=70 độ. Mà góc BCD=70 độ nên góc ADC= góc BCD=> hình thang ABCD cân
.
1, vì AB=AC, AD=AE nên AB/AE = AC/AD => DE//BC (1)
xét tam giác ABD và tam giác ACE có: AD=AC, góc DAB= góc CAE( đối đỉh), AB=AC. Do đó tamgíac ABD= tan giác ACE(c.g.c) . => góc ABD= góc ACE. Mà góc ABC= góc ACB( tam giác ABC cân tại A) nên góc ABD+ góc ABC= góc ACE+ góc ACB<=> góc DBC= góc ECB(2) . Từ 1 và 2 suy ra tứ giác ABCD là hìh thang cân

Đề bài bị sai
Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.
Bài giải:
A B C D E N M Q P
a) \(\Delta\)ABC đều
=> ^BAC = 60 độ
mà ^ EAD = ^BAC ( đối đỉnh)
=> ^EAD = 60 độ
Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD
=> \(\Delta\)EAD đều
=> ^EDA = ^ABC (= 60 độ ) mà hai góc này ở vị trí so le trong
=> ED//BC (1)
Xét \(\Delta\) EAB và \(\Delta\)DAC có:
AE = AD ;
^ EAB = ^DAC ( đối đỉnh)
AB = AC
=> \(\Delta\)EAB = \(\Delta\)DAC
=> ^BEA = ^CDA
mà ^ AED = ^ ADE ( \(\Delta\)AED đều )
=> ^ BEA + ^AED = ^CDA + ^DAC
=> ^BED = ^CDA (2)
Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.
b) ED // BC ( theo 1)
=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)
=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)
=> EN//CQ
=> CNEQ là hình thang.
hình thang cân
B C A D E
(Bạn thông cảm nha. Mình vẽ hình không đẹp lắm)
Ta có \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(\(\Delta ABC\)cân tại A) (1)
và AD = AE (gt)
nên \(\Delta ADE\)cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)(2)
Từ (1) và (2)
=> \(\widehat{ABC}=\widehat{AED}\)ở vị trí đồng vị (3)
=> BC // ED
nên tứ giác DEBC là hình thang (*)
Chứng minh tương tự, ta cũng có: \(\widehat{ACB}=\widehat{ADE}\)(4)
và \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A) (5)
Từ (3), (4) và (5) => \(\widehat{AED}=\widehat{ADE}\)(**)
Từ (*) và (**)
=> Tứ giác DEBC là hình thang cân