Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
opps hihi xin lỗi lúc nảy em làm vội nên sai,thế này mới chính là câu trả lời của em
Lời giải. Kẻ OA1⊥BC,OB1⊥AC,OC1⊥AB. Khi đó tứ giác OA1C1B,OA1B1C,OC1AB1 nội tiếp nên theo định lý Ploteme ta có
⎨aR=bz+cy
az=cx+bR⇒R(a+b+c)=b(z−x)+c(y−x)+a(y+z)(1)
ay=bx+cR
Ta lại có 2SABC=r(a+b+c)=cz+by−ax (2)
Cộng (1)với (2) ta thu được R+r=y+z−x. ■
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
Xét ΔABC vuông tại A có
\(tanB=\dfrac{AC}{AB}\)
=>\(\dfrac{AC}{6}=\dfrac{4}{3}\)
=>\(AC=\dfrac{4}{3}\cdot6=8\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Câu 4:
a: Thay x=2 và y=5 vào y=(2m-1)x+3, ta được:
2(2m-1)+3=5
=>2(2m-1)=2
=>2m-1=1
=>2m=2
=>\(m=\dfrac{2}{2}=1\)
b: Khi m=1 thì \(y=\left(2\cdot1-1\right)x+3=x+3\)