\(\in\) BC).

a) Chứng minh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

A B C M H 5 5 8

a) Xét ΔAHB và ΔAHC có :

\(\widehat{ABH}=\widehat{ACH}\) (ΔABC cân tại A)

AB = AC (ΔABC cân tại A)

\(\widehat{AHB}=\widehat{AHC}\left(=90độ\right)\)

Suy ra : ΔAHB = ΔAHC (ch - gn)

Ta có đpcm

b) Từ câu a có :

ΔAHB = ΔAHC (ch - gn)

=>BH = HC (2 cạnh tương ứng)

=> \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)

Xét ΔACH cân tại H (AH ⊥BC) có :

Áp dụng định lí PY - TA - GO :

\(AH^2=AB^2-BH^2\)

=> \(AH^2=5^2-4^2=9\)

=> \(AH=\sqrt{9}=3\left(cm\right)\)

Ta có đct

c) Xét ΔABH và ΔMBH có :

\(AH=MH\left(gt\right)\)

\(\widehat{AHB}=\widehat{MHB}\left(=90độ\right)\)

BH : cạnh chung

=> ΔABH = ΔMBH (c-g-c)

=> AB = BM (2 cạnh tương ứng)

Do đó : ΔABM cân tại B

Ta có đpcm

d)Xét ΔACH và ΔMBH có :

\(AC=BM\left(=AB\right)\)

BH = HC (chứng minh trên)

AH = HM (gt)

=> ΔACH = ΔMBH (c.c.c)

=> \(\widehat{HAC}=\widehat{HMB}\) (2 góc tương ứng)

Mặt khác, thấy : 2 góc này ở vị trí so le trong

Suy ra : BM // AC

Ta có đpcm

14 tháng 12 2019

Không biết có phải mình vẽ hình sai hay không chứ mình thấy đề hơi vô lí 

14 tháng 12 2016

Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....

14 tháng 12 2016

sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo

5 tháng 11 2019

A B C H M N D 1 2 1 2

Cm: a) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

  AH : chung

 BH  = CH (gt)

=> t/giác ABH = t/giác ACH (c.c.c)

Ta có: t/giác ABH = t/giác ACH (cmt)

=> \(\widehat{H_1}=\widehat{H_2}\) (2 góc t/ứng)

Mà \(\widehat{H_1}+\widehat{H_2}=180^0\) (kề bù)

=> \(\widehat{H_1}=\widehat{H_2}=90^0\) => t.giác AHB là t/giác vuông

c) Xét t/giác AHB và t/giác DHC

có AH = HD (gt)

  BH = CH (gt)

 \(\widehat{AHB}=\widehat{CHD}\) (đối đỉnh)

=> t/giác AHB = t/giác DHC (c.g.c)

=> \(\widehat{BAH}=\widehat{HDC}\) (2 góc t/ứng)

Mà 2 góc này ở vị trí so le trong

=> AB // CD 

d) Xét t/giác ABM và t/giác CNM

có: AM = MC (gt)

 BM = MN (gt)

 \(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)

=> t.giác ABM = t/giác CNM (c.g.c)

=> AB = CN (2 cạnh tứng)

Mà AB = CD (vì t/giác ABH = t/giác DCH)

=> DC = CN => C là trung điểm của BN

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

2 tháng 4 2017

vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)

=>AM=1/2*BC=BM=CM

xét tam giácBMA và tam giác DMC có : 

AM=MD(gt)

góc BMA=góc DMC (đ đ)

BM=MC(gt)

=> 2 tam giác đó bằng nhau(c-g-c)

=>ACB=ADC(2GTU) 

AB=DC(2ctu)

ta có BM+CM =BC, AM+MD=AD

mà BM=CM, AM=MD

và  AM=BM=CM

=> BC=AD

xét tam giác BAC và tam giác DCA có :

BA=DC (cmt)

AC là cạnh chung 

BC=AD (cmt)

=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC

2 tháng 4 2017

b) tam giác MAC= tam giác MAE (cgc)=> AC= AE (2ctu)=>CAE cân tại A

26 tháng 6 2020

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

26 tháng 6 2020

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )