Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) tta có góc HBD=góc ABC ( đối đỉnh )
góc KCE=góc ACB ( đối đỉnh )
mà góc ABC=góc ACB ( tam giác ABC cân )
suy ra góc HBD=gócKCE
xét tam giác HBD và KCE có :
HBD=KCE
BHD=CKE (=90 độ )
BD=CE
=) tam giác HBD=KCE
=)HB=CK
b) ta có góc AHB=ACK ( = 180* - góc ABC )
xét tam giác AHB và tam giác AKC có
góc AHB=gócAKC
HB=CK
AB=AC
suy ra tam giác AHB= tam giác AKC
=) góc AHK = góc AKC
c) ta có HD//KE ( cùng vuông vs BC )
mà HD=KE ( tg HBD=tgKCE )
suy ra HKED là hình bình hành
=) HK//DE
d) ta có góc HAD=góc KAE ( tg AHB=tgAKC )
=) góc HAD+BAC=góc KAE+BAC
=) góc HAE= góc KAD
do AB=AC ; BD=CE =) AB+BD=AC+CE
=) AD=AE
xét tg AHE và tg AKD có
góc HAE=góc KAD
AH=AK ( tg AHB=tg AKC )
AE=AD
suy ra tg AHE = tg AKD
e) do HKED là hình bình hành ; HK vuông vs HD
=) HKED là hình chữ nhật
mà I là gđ của 2 đường chéo HE và DK
suy ra ID=IE
xét tg AID và tg AIE có
AD=AE
ID=IE
chung AI
suy ra tg AID=tg AIE
=) góc DAI = góc EAI
=) AI là phân giác goc DAE
mà tg DAE cân tại A
suy ra AI là đường cao tg DAE
=) AI vuông vs DE
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
![](https://rs.olm.vn/images/avt/0.png?1311)
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
![](https://rs.olm.vn/images/avt/0.png?1311)
ai giup minh cau 2a khg
chiu nay co kiem tra rui
giup minh vs
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E H F D K M O N
MF _|_ BH (gt) và BH _|_ AC (gt) => FM // AC (đl)
=> góc FMB = góc ACB (đồng vị)
mà góc ACB = góc ABC do tam giác ABC cân tại A (gt)
=> góc FMB = góc ABC
xét tam giác BDM và tam giác MFB có : BM chung
góc BDM = góc BFM = 90
=> tam giác BDM = tam giác MFB (ch-gn)
=> BD = FM (đn) (1)
xét tứ giác FHEM có : góc MFH = góc FHE = góc HEM = 90
=> FHEM là hình chữ nhật (dh)
=> FM = HE (tc) và (1)
=> BD = HE (2)
kẻ DO // AC
=> góc BOD = góc ACB (đồng vị)
góc ACB = góc ABC (cmt)
=> góc DBO = góc DOB
=> tam giác DOB cân tại D (dh)
=> BD = DO và (2)
=> DO = HE
mà HE = CK (gt)
=> DO = CK (3)
gọi DK cắt BC tại N
xét tam giác DNO và tam giác KNE có : góc DNO = góc KNE (đối đỉnh)
góc ODN = góc NKC do DO // AC (cách vẽ) và (3)
=> tam giác DNO = tam giác KNE (g-c-g)
=> DN = NK (đn)
mà N nằm giữa D và K
=> N là trung điểm của DK
N thuộc BC
=> BC đi qua trung điểm của DK
Bạn tự vẽ hình nha.
Xét tam giác BED và tam giác CKD ta có:
DE=DK
BD=CD( D là trung điểm của BC)
BDE=CDK(đối đỉnh)
Do đó tam giác BED=tam giác CKD(c-g-c)
Vậy góc BED=góc CKD.Mà DK vuông góc với AC nên góc DKA =góc DKC=90 độ
=>BED =90 độ