Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) tam giác ABC cân tại A.
AH là đường cao= > đồng thời là trung tuyến, PHÂN GIÁC... => HB=HC
D,E là trung điểm => 4 đoạn DB=BH=HE=EC
tam giác DMB và tam giác ENC:
góc M= góc N=90
DB=EC
góc B=góc C
=> tam giác DMB= tam giác ENC (ch.gn)
=> BM=NC
ta có: BM+AM=AB
NC+AN=AC
MÀ BM=NC. AB=AC => AM=AN
=> TAM GIÁC AMN CÂN TẠI A. AH LÀ PG => AH LÀ ĐƯỜNG CAO <=> AH VUÔNG GÓC MN
B) AH VUÔNG GÓC BC => MN//BC HAY MN//DE
TAM GIÁC DMB= TAM GIÁC ENC (CMT)=> GÓC MDB= GÓC NEC
MÀ MDB=NMD (SLT); GÓC NEC=MNE(SLT)
=> GÓC NMD= GÓC MNE
=> DENM LÀ HÌNH THANG CÂN

hình bạn tự vẽ
a) Xét ΔHBA và ΔABC có :
^H = ^A = 900
^B chung
=> ΔHBA ~ ΔABC (g.g)
b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm
Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC
=> BC = AB2/HB = 152/9 = 25cm
Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm
=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2
c) mình chưa nghĩ ra :v
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)

A B C H D E N M F
a) Tam giác ABC cân tại A có đường cao AH xuất phát từng đỉnh nên đồng thời là đường trung tuyến.
Từ đó H là trung điểm BC. Có ngay: DH là đường trung bình nên DH// AC -> Tứ giác ADHC là hình thang.
b) Chứng minh AN \(\perp\) HM
Gọi giao điểm của AN và HM là F. Cần chứng minh ^AFH = 90o.
Tới đây tịt ngòi rồi:(( khi nào nghĩ ra làm tiếp:v
Làm nốt bài tth_new nha.
Xét tam giác EHC có NH là đường trung bình nên \(NM//HC\Rightarrow NM\perp AH\)
Mà \(HE\perp AC\) nên N là trực tâm.Khi đó \(AN\perp HM\)

a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra:AH=DE

a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm

bạn tự vẽ hình nhé
a, xét tgABH và tg CAH có
\(\widehat{AHB}=\widehat{CHA}=90\)
\(\widehat{ABH}=\widehat{HAC}\)(cùng phụ với góc BAH)
suy ra chúng đồng dạng theo g.g
b, VÌ tgABH đồng dạng tg CAH
suy ra \(\frac{AB}{AC}=\frac{BH}{AH}=\frac{2BF}{2AE}=\frac{BF}{AE}\)
suy ra AB.AE=AC.BF

A B C H D E O P Q
câu a, dễ thấy tứ giác AEHD có 3 góc A=E=D=90 độ nên AEHD là hình chữ nhật, do đó AH=DE.
b.Xét tam giác BHD vuông tại D và có P là trung điểm BH do đso
\(\widehat{PDH}=\widehat{PHD}\)mà \(\widehat{PHD}=\widehat{QCE}\)( đồng vị)
và \(\widehat{QCE}=\widehat{QEC}\)
do đó ta có \(\widehat{PDH}=\widehat{QEC}\) mà HD//CE nên DP //QE . do đó DEPQ là hình thang