Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)
hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)
hay MN//BC(Đpcm)
b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)
nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)
mà AM+CM=AC(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)
\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)
hay \(MN=\dfrac{30}{11}\left(cm\right)\)
c) Nửa chu vi của ΔABC là:
\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)
Ta có: ΔANM∼ΔABC(gt)
nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)
\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔBAC có BM là phân giác
nen AM/MC=AB/BC=AC/BC
Xet ΔABC có CN là phân giác
nen AN/NB=AC/BC
=>AM/MC=AN/NB
=>MN//BC
b: Xét ΔANC và ΔAMB có
góc ACN=góc ABM
góc A chung
=>ΔANC đồng dạng với ΔAMB
c: AM/AB=MC/BC
=>AM/5=MC/6=5/11
=>AM=25/11cm; MC=30/11cm
MN//BC
=>MN/BC=AM/AC
=>MN/6=25/11:5=5/11
=>MN=30/11cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Xét △ABC vuông tại A (gt)
=> BC2 = AB2 + AC2 (định lý Pytago)
BC2 = 52 + 122 = 25 + 144 = 169
=> BC = \(\sqrt{169}\) = 13 cm
Xét △ABC có BF là tia phân giác của góc ABC (gt)
=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)
=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)
=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm
b)Xét △ABF và △HBE có:
góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)
góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABF ∼ △HBE (g.g)
c) Vì △ABF ∼ △HBE (câu b)
=> góc BFA bằng góc BEH
mà góc AEF bằng góc BEH (2 góc đối đỉnh)
=> góc BFA bằng góc AEF
=> △AEF cân tại A
d)Xét △ABC và △AHB có:
góc ABC chung
góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABC ∼ △HBA (g.g)
=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)
Xét △ABH có BE là tia phân giác của góc ABC (gt)
=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)
Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)
=> AB.AE=BC.HE(chắc vậy?)
a: Xét ΔANC và ΔAMB có
góc ACN=góc ABM
góc NAC chung
=>ΔANC đồng dạng với ΔAMB