Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề có sai không zợ
nói tg ABC cân mà AB>AC
a)\(\text{ Xét }\Delta ABH\)\(\text{và }\Delta ACH\)\(\text{có}\)
\(AB=AC\)
\(\widehat{ABH}=\widehat{ACH}\left(\Delta\text{ABC cân}\right)\)
\(BH=CH\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)
\(\text{Mà }\widehat{AHB}+\widehat{AHC}=180^o\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)
\(\Rightarrow AH\perp BC\)
b) \(\text{Có }BH=\frac{BC}{2}\left(gt\right)\)
\(\text{Mà BC = 4 ( GT )}\)
\(\Rightarrow BH=4cm\)
\(\text{Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta được :}\)
\(\text{AH^2 + BH^2 = AB^2}\)
\(\Rightarrow AH^2+2^2=6^2\)
\(\text{=> AH^2 = 32}\Rightarrow AH^2=32\)\(\Rightarrow AH^2=32\)
\(\Rightarrow AH=\sqrt{32}\)
\(\text{Vậy }AH=\sqrt{32}\)

Trả lời:
P/s: Xin lỗi nha!~Chỉ đc mỗi câu a!!!~
a) Theo giả thiết ta có :
AH là đường trung tuyến ⇒BH=HC⇒BH=HC
xét ΔAHBΔAHB và ΔAHCΔAHC có:
AB=ACAB=AC (gt)
AHAH chung
BH=HCBH=HC ( cmt)
⇒ΔAHB=ΔAHC⇒ΔAHB=ΔAHC (c.c.c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ (2 góc tương ứng )
~Học tốt!~
b , Ta có : HB +HC= Bc
mà : HB=HC (GT)
=> HB=HC=\(\frac{BC}{2}\)=\(\frac{4}{2}\)= 2
Ta có : \(\Delta ABH\)vuông tại H
=> \(AB^2\)= \(BH^2\)+ \(AH^2\)( Định lí Py-ta-go)
=> 62 = 22 + AH2
=> AH2 = 62 - 22
=> AH2 = 32
=> AH \(\approx\) 5,7 cm

Câu a: Chứng minh tam giác ABH = tam giác ACH
Ta có tam giác ABC cân tại A, tức là ( AB = AC ).
Điểm ( H ) là trung điểm của đoạn ( BC ), nên ( BH = HC ).
Xét hai tam giác ( ABH ) và ( ACH ):
- ( AB = AC ) (giả thiết tam giác ABC cân tại A).
- ( BH = HC ) (do ( H ) là trung điểm của ( BC )).
- ( \angle ABH = \angle ACH ) (đối đỉnh).
Vậy theo cạnh - góc - cạnh (c.g.c), ta có:
[ \triangle ABH = \triangle ACH ]
Câu b: Chứng minh ( \angle ABM = \angle ACM ) và tam giác MBC cân
- Vì ( M ) nằm trên tia phân giác của góc ( ABC ), ta có: [ \angle ABM = \angle CBM ]
- Mặt khác, do tam giác ( ABH ) và ( ACH ) bằng nhau (chứng minh ở câu a), nên: [ \angle CBM = \angle ACM ] Suy ra:
[ \angle ABM = \angle ACM ] - Xét tam giác ( MBC ):
- ( \angle CBM = \angle BCM ) (do ( M ) nằm trên tia phân giác của ( \angle ABC )).
- ( MB = MC ) (cạnh đối diện hai góc bằng nhau).
Vậy tam giác ( MBC ) cân tại ( M ).
Câu c: Chứng minh ( AB = AN )
- Do đường thẳng đi qua ( A ) song song với ( BC ) cắt tia ( BM ) tại ( N ), ta có:
[ AN \parallel BC ] - Xét tam giác ( ABN ), có ( AN \parallel BC ) nên theo định lý đường trung bình của tam giác, ta có:
[ AB = AN ]
Câu d: Chứng minh ( MC \perp CN )
- Từ câu b, tam giác ( MBC ) cân tại ( M ) nên ( MC = MB ).
- Do ( AN \parallel BC ), nên góc ( MCN ) bằng góc ( NBC ).
- Mà ( \angle NBC = 90^\circ ) (do đường thẳng ( AN ) song song với ( BC )).
- Vậy suy ra ( MC \perp CN ).

c) AC// BH -> \(\widehat{ACI}=\widehat{BHI}\) -> \(\widehat{HIC}=\widehat{BHI}\Rightarrow\Delta BHC\)cân => BH=BC