Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
đây nhé, cậu chịu khó tự vẽ hình vậy
câu a, ta có MN//AB(đường trung bình ) nên \(\widehat{MNC}=\widehat{BAC}\)
mà \(\hept{\begin{cases}\widehat{MNC}+\widehat{ONM}=90^o\\\widehat{BAC}+\widehat{ABH}=90^o\end{cases}}\) => \(\widehat{ABH}=\widehat{MNO}\)
b) kẻ \(BK⊥BC=B\) (K là giao của OC với BK)
ta có \(OM=\frac{1}{2}BK\Rightarrow O\) là trung điểm của KC=>ON //AK( đường tb)
mà ON//BH=>AK//BH và ta có BK//AH nên AKBH là hình bình hành => BK=AH => 2OM=AH
mà 2GM=AG =>\(\frac{GM}{OM}=\frac{AG}{AH}\) (1)
mặt khác ta có \(\widehat{HAM}=\widehat{OMG}\) (so le trong ) (2)
từ (1) và (2) =>tam giác AHG đồng dặng với tam giác MOG(ĐPCM)
c) dựa vào câu b nhé
dễ mà
a, ta có
tam giác ABH đồng dạng với tam giác MNO (g.g) (chứng minh = cách sd t/c cua 2 góc có cạnh t/ứ //)
=> AH/OM = AB /MN =2 => DPCM
b,Gọi giao điểm của HO và AM là G'
cần chứng minh G' trùng G
Ta c/m đc tam giác AG'H đồng dạng tg MG'O
=> AG' /MG' =AH/MO =2 => G' chia đoạn AM theo ti số 2:1 => G' là trọng tâm => G' trùng G
=> ĐPCM
vậy là 3 k nhé
*****
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : Bài giải
Hình tự vẽ //
a) Ta có DOC = cung DC
Vì DOC là góc ở tâm và DAC là góc chắn cung DC
=>DOC = 2 . AOC (1)
mà tam giác AOC cân =>AOC=180-2/AOC (2)
Từ (1) ; (2) ta được DOC + AOC = 180
b) Góc ACD là góc nội tiếp chắn nữa đường tròn
=>ACD=90 độ
c) c) HC=1/2*BC=12
=>AH=căn(20^2-12^2)=16
Ta có Sin(BAO)=12/20=>BAO=36.86989765
=>AOB=180-36.86989765*2=106.2602047
Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)
<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2
=>OA=12.5
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C G F E D Q P
a) Ta dễ thấy ^ABF = ^BAF = ^BAD = ^CAD = ^ACE = ^CAE. Suy ra \(\Delta\)ABF ~ \(\Delta\)ACE (g.g) (đpcm).
b) Gọi BE cắt CF tại G. Áp dụng hệ quả ĐL Thales, kết hợp với \(\Delta\)ABF ~ \(\Delta\)ACE ta có:
\(\frac{GC}{GF}=\frac{CE}{FB}=\frac{AC}{AB}\). Mà \(\frac{AC}{AB}=\frac{DC}{DB}\)(ĐL đường phân giác trong tam giác) nên \(\frac{GC}{GF}=\frac{DC}{DB}\)
Do đó GD // BF // CE (ĐL Thales đảo). Lại có AD // BF // CE nên A,G,D thẳng hàng
Vậy thì AD,BE,CF cắt nhau tại G (đpcm).
c) Chú ý GQ // AE suy ra ^AGQ = ^GAE = ^GAF, đồng thời có AG // QF. Suy ra AFQG là hình thang cân (1)
Mặt khác BF // CE dẫn đến ^GFQ = ^GCE = ^GPQ. Từ đây bốn điểm P,Q,F,G cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra các điểm A,P,G,Q,F cùng thuộc một đường tròn (đpcm).
khó quá à