Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\hat{AMB}=\hat{AMC}\)
mà \(\hat{AMB}+\hat{AMC}=180^0\) (hai góc kề bù)
nên \(\hat{AMB}=\hat{AMC}=\frac{180^0}{2}=90^0\)
=>AM⊥BC tại M
2: Xét ΔNAD và ΔNCM có
\(\hat{NAD}=\hat{NCM}\) (hai góc so le trong, AD//CM)
NA=NC
\(\hat{AND}=\hat{CNM}\) (hai góc đối đỉnh)
Do đó: ΔNAD=ΔNCM
=>AD=CM
Xét tứ giác AMCD có
AD//CM
AD=CM
do đó: AMCD là hình bình hành
Hình bình hành AMCD có \(\hat{AMC}=90^0\)
nên AMCD là hình chữ nhật

a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
DO đó: MN là đường trung bình
=>MN//AB
hay MD//AB
Xét tứ giác ABMD có
AD//BM
AB//MD
Do đó; ABMD là hình bình hành
b:
Ta có: MN=1/2AB
nên MN=1/2AC
mà MN=1/2MD
nên AC=MD
c: Ta có: ABMD là hình bình hành
nên AD//MB và AD=MB
=>AD//MC và AD=MC
Xét tứ giác AMCD có
AD//MC
AD=MC
Do đó: AMCD là hình bình hành
mà MD=AC
nên AMCD là hình chữ nhật

Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành

a) Do MN // AB (gt)
⇒ MN // AE
Do ME // AC (gt)
⇒ ME // AN
Do AM là tia phân giác của ∠BAC (gt)
⇒ AM là tia phân giác của ∠EAN
Xét tứ giác AEMN có:
MN // AE (cmt)
ME // AN (cmt)
⇒ AEMN là hình bình hành
Mà AM là tia phân giác của ∠EAN (cmt)
⇒ AEMN là hình thoi
b) Do D là điểm đối xứng của M qua N (gt)
⇒ N là trung điểm của DM
∆ABC cân tại A có AM là tia phân giác của ∠BAC (gt)
⇒ AM cũng là đường trung trực của ∆ABC
⇒ M là trung điểm của BC
∆ABC có:
M là trung điểm của BC (cmt)
MN // AB (gt)
⇒ N là trung điểm của AC
Tứ giác ADCM có:
N là trung điểm của DM (cmt)
N là trung điểm của AC (cmt)
⇒ ADCM là hình bình hành
⇒ AD // CM
⇒ AD // BM
Do MN // AB (gt)
⇒ MD // AB
Tứ giác ADMB có:
MD // AB (cmt)
AD // BM (cmt)
⇒ ADMB là hình bình hành
1: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\hat{AMB}=\hat{AMC}\)
mà \(\hat{AMB}+\hat{AMC}=180^0\) (hai góc kề bù)
nên \(\hat{AMB}=\hat{AMC}=\frac{180^0}{2}=90^0\)
=>AM⊥BC tại M
2: Xét ΔNAD và ΔNCM có
\(\hat{NAD}=\hat{NCM}\) (hai góc so le trong, AD//CM)
NA=NC
\(\hat{AND}=\hat{CNM}\) (hai góc đối đỉnh)
Do đó: ΔNAD=ΔNCM
=>AD=CM
Xét tứ giác AMCD có
AD//CM
AD=CM
do đó: AMCD là hình bình hành
Hình bình hành AMCD có \(\hat{AMC}=90^0\)
nên AMCD là hình chữ nhật