Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em tự vẽ hình nhé
a) Xét \(\Delta BED\) và \(\Delta CFD\) có:
\(\widehat{BED}=\widehat{CFD}=90^0\);
\(\widehat{BDE}=\widehat{CDF}\) (đối đỉnh)
\(\Rightarrow\Delta BED\sim\Delta CFD\) (g.g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC\:}=90^0\);
\(\widehat{BAE}=\widehat{CAF}\) (tính chất phân giác)
\(\Rightarrow\Delta ABE\sim\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\)
c) Do \(BE//FC\) (cùng vuông góc \(AD\))
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{BE}{FC}\) mà \(\dfrac{BE}{FC}=\dfrac{BD}{CD}\) (do \(\Delta BED\sim\Delta CFD\))
Lại có \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (tính chất tia phân giác); \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (câu b)
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{AE}{AF}\Rightarrow SA//BE\) (ĐL Ta-let đảo)
\(\Rightarrow SA//CF\Rightarrow SA\perp AF\)

Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))

a: Xét ΔBKA vuông tại K và ΔBFC vuông tại F có
\(\widehat{FBC}\) chung
Do đó: ΔBKA\(\sim\)ΔBFC
Suy ra: BK/BF=BA/BC
hay \(BK\cdot BC=BF\cdot BA\)
b: Xét ΔBKF và ΔBAC có
BK/BA=BF/BC
\(\widehat{KBF}\) chung
Do đó: ΔBKF\(\sim\)ΔBAC