Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng hệ quả của định lí sin và định lí cosin, ta có:
\(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}}\)
và \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\( \Rightarrow \cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{a}{{2R}} = R.\frac{{{b^2} + {c^2} - {a^2}}}{{abc}}\)
Tương tự ta có: \(\cot B = R.\frac{{{a^2} + {c^2} - {b^2}}}{{abc}}\) và \(\cot C = R.\frac{{{a^2} + {b^2} - {c^2}}}{{abc}}\)
\(\begin{array}{l} \Rightarrow \cot A + \cot B + \cot C = \frac{R}{{abc}}\left[ {\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - {c^2}} \right)} \right]\\ = \frac{R}{{abc}}\left( {2{b^2} + 2{c^2} + 2{a^2} - {a^2} - {c^2} - {b^2}} \right) = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\end{array}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có: \(\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\S=\frac{1}{2}ac.sinB\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\sinB=\frac{2S}{ac}\end{matrix}\right.\)
\(\Rightarrow cotB=\frac{cosB}{sinB}=\frac{\left(a^2+c^2-b^2\right).ac}{2ac.2S}=\frac{a^2+c^2-b^2}{4S}\)
b/ Tương tự: \(cotA=\frac{b^2+c^2-a^2}{4S}\) ; \(cotC=\frac{a^2+b^2-c^2}{4S}\)
\(\Rightarrow cotA+cotB+cotC=\frac{a^2+b^2+c^2}{4S}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo tính chất của tam giác, ta có:
\(A+B+C=180^0\)
\(\Rightarrow\dfrac{A+B+C}{2}=90^0\)
\(\Rightarrow\dfrac{B+C}{2}=90^0-\dfrac{A}{2}\)
\(\Rightarrow tan\left(\dfrac{B+C}{2}\right)=tan\left(90^0-\dfrac{A}{2}\right)\)
\(\Rightarrow tan\left(\dfrac{B+C}{2}\right)=cot\left(\dfrac{A}{2}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(cotA=\dfrac{cosA}{sinA}=\dfrac{b^2+c^2-a^2}{2bc}:\dfrac{2S}{bc}=\dfrac{b^2+c^2-a^2}{4S}\)
Tương tự...
Thay vào đề bài:
\(2\left(\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\right)=\dfrac{a^2+c^2-b^2}{4S}\)
\(\Rightarrow4b^2=a^2+c^2-b^2\Rightarrow5b^2=a^2+c^2\)
\(\Rightarrow cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+c^2-\dfrac{a^2+c^2}{5}}{2ac}=\dfrac{2\left(a^2+c^2\right)}{5ac}\ge\dfrac{4ac}{5ac}=\dfrac{4}{5}\)
\(\Rightarrow sinB=\sqrt{1-cos^2B}\le\sqrt{1-\left(\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)
Em kiểm tra lại đề, BĐT đề bài bị ngược dấu
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ C kẻ đường cao CH xuống đáy AB
\(cotA+cotB=\dfrac{AH}{CH}+\dfrac{BH}{CH}=\dfrac{AB}{CH}\)
Mà \(cotA+cotB=\dfrac{a^2+b^2}{2S}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> \(\dfrac{AB}{CH}=\dfrac{AC^2+BC^2}{AB.CH}\)
=> AB2 = AC2 + BC2
=> tam giác ABC vuông tại C
\(cotA+cotB=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{2S}{bc}}+\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{2S}{ac}}=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}=\dfrac{c^2}{2S}\)
Mà theo giả thiết \(cotA+cotB=\dfrac{a^2+b^2}{2S}\)
\(\Rightarrow\dfrac{a^2+b^2}{2S}=\dfrac{c^2}{2S}\Rightarrow a^2+b^2=c^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo
`Answer:`
a) \(a^2=b^2+c^2-2bc\cos A\)
\(2S=bc.\sin A\)
\(\Rightarrow2bc=\frac{4S}{\sin A}\)
\(\Rightarrow a^2=b^2+c^2-\frac{4S\cos A}{\sin A}=b^2+c^2-4S\cot A\)
\(\Rightarrow\cot A=\frac{b^2+c^2-a^2}{4S}\)