
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bôi bác kirito thần tưởng ảo của tôi vửa phải thôi,đẹp trai,thông minh và tài ba nữa chứ


a) A thuộc { abc ; acb ; bac ; bca ; cab ; cba }
b) 2 số nhỏ nhất trong tập hợp A là abc , acb. Theo đầu bài ta có :
abc + acb = 488
( 100a + 10b + c ) + ( 100a + 10c + b ) = 488
( 100a + 100a ) + ( 10b + b ) + ( c + 10c ) = 488
200a + 11b + 11c = 488
200a + 11 ( b + c ) = 488
=> 488 : 200 = a ( dư 11 ( a + b ) ) <=> 488 : 200 = 2 ( dư 88 )
=> a = 2
11 ( b + c ) = 88
=> b + c = 8
Do a < b < c nên 2 < b < c
Mà b + c = 8
=> b = 3 ; c = 5
Vậy a + b + c = 2 + 3 + 5 = 10


Vì a,b,c,d thuộc N*
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{d+c}{a+b+c+d}\)
e cộng vế theo vế đc 1<...<2
Ta có \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d} \quad (vì\quad a,b,c,d>0)\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\); \(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}; \quad \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
=> \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\) (1)
Lại có:\(\frac{a}{a+b+c}<\frac{a}{a+b} \quad (vì\quad a,b,c,d>0)\);
\(\frac{b}{b+c+d}<\frac{b}{a+b};\quad \frac{c}{c+d+a}<\frac{c}{c+d} ;\frac{d}{d+a+b}<\frac{d}{c+d}\)
=> \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}<\frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)(2)
Từ (1) và (2) Ta có...


a)
A= {abc;acb;bac;bca;cab;cba}
b)
Hai số lớn nhất trong tập hợp A là cab và cba
=>cab + cba=499
=>100c(10a+b+10b+a)=499
=>1100ac+1100bc=499
@@
Dám lấy bài của cô ra hỏi à
Vừa vừa phải phải thôi
Tự nghĩ đi
với a,b,c > 0, ta có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow S>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow S>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow S>1\) (1)
có : \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
\(\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow S< \frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow S< 2\) (2)
(1)(2) => 1 < S < 2