Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)
b/ Pt có 2 nghiệm phân biệt
\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)
\(\to m\in \mathbb R\)
c/ Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)
Tổng bình phương các nghiệm là 10
\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)
\(\to 4m^2-4m+2=10\)
\(\leftrightarrow 4m^2-4m-8=0\)
\(\leftrightarrow m^2-m-2=0\)
\(\leftrightarrow m^2-2m+m-2=0\)
\(\leftrightarrow m(m-2)+(m-2)=0\)
\(\leftrightarrow (m+1)(m-2)=0\)
\(\leftrightarrow m+1=0\quad or\quad m-2=0\)
\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)
Vậy \(m\in\{-1;2\}\)

Đặt \(x^2=a\left(a\ge0\right)\)
Khi đó PT tương đương: \(a^2-2\left(m+1\right)a+2m+1=0\) (1)
\(\Delta^'=\left[-\left(m+1\right)\right]^2-1\cdot\left(2m+1\right)=m^2+2m+1-2m-1=m^2\)
Mà \(\Delta^'=m^2\ge0\left(\forall m\right)\) => PT luôn có nghiệm
Để PT đề bài có 2 nghiệm phân biệt thì ta có 2TH sau:
TH1: PT(1) phải có 1 nghiệm dương, 1 nghiệm âm
Khi đó theo hệ thức viet thì \(2m+1< 0\Leftrightarrow m< -\frac{1}{2}\)
Khi đó a dương sẽ là giá trị thỏa mãn => \(\Rightarrow\hept{\begin{cases}x_1=\sqrt{a}\\x_2=-\sqrt{a}\end{cases}}\)
TH2: PT(1) có nghiệm kép dương
PT có nghiệm kép thì \(\Delta^'=0\Rightarrow m=0\)
Thay vào ta được: \(x^4-2x^2+1=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\left(tm\right)\)
Vậy \(\orbr{\begin{cases}m=0\\m< -\frac{1}{2}\end{cases}}\) thì PT có 2 nghiệm phân biệt