K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

Có P = \(n^4-27n^7+121\)

\(=n^4+22n^2+121-49n^2\)

\(=\left(n^2+11\right)^2-\left(7n\right)^2\)

\(=\left(n^2-7n+11\right)\cdot\left(n^2+7n+11\right)\)

\(n\in N\) nên \(n^2+7n+11>11\)

Nếu \(n^2-7n+11< 0\Rightarrow P< 0\) (loại)

Nếu \(n^2-7n+11=0\Rightarrow P=0\) (loại)

Nếu \(n^2-7n+11>1\) (loại vì P là tích của 2 số nguyên dương >1 nên không là số nguyên tố)

Vậy nên \(n^2-7n+11=1\)

\(\Leftrightarrow n^2-7n+10=0\)

\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n-2=0\\n-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=5\end{matrix}\right.\)

Vậy \(n\in\left\{2;5\right\}\) thì P là số nguyên tố