\(x^2-\left(m+5\right)x+3m+6=0\) (x là ẩn số)

a) CMR: phương...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ}=\left(m+5\right)^2-4\left(3m+6\right)\)

\(=m^2+10m+25-12m-24=\left(m-1\right)^2>=0\)

=>Phương trình luôn có hai nghiệm

b: Theo đề, ta có: \(x_1^2+x_2^2=25\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+5\right)^2-2\left(3m+6\right)-25=0\)

\(\Leftrightarrow m^2+10m+25-25-6m-12=0\)

=>m^2-4m-12=0

=>m=6 hoặc m=-2

25 tháng 5 2016

Bảo Ngọc tính nghiệm bị sai!

25 tháng 5 2016

a) Ta xét : 

\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)

Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.

b) Dễ thấy : x1<x2 nên ta có : 

\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)

\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)

\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)

\(\Leftrightarrow m=2\)

Vậy m = 2

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

5 tháng 4 2016

Xét (delta)=(2m+1)^2-2m

              =4m^2+4m+1-2m

              =4m^2+2m+1(luôn lớn hôn hoặc bằng 0)

Suy ra phương trình đã cho luôn có nghiệm

Theo hệ thức Vi-ét có x1+x2=2(2m+1)

                                 x1.x2=2m

Theo bài ra có x1^2+x2^2=(2căn3)^2

                     (x1^2+x2^2)^2-2x1.x2=12

                     4(2m+1)^2-4m=12

                     16m^2+12m+4=12

                     16m^2+12m-8=0

Suy ra m=\(\frac{-3+\sqrt{41}}{8}\)hoặc m=\(\frac{-3-\sqrt{41}}{8}\)

10 tháng 3 2018

a)cho m=0 =>x tự làm theo ct nhe 
B) pt co 2 n <=> delta=1-(m-1)>0 <=>m<2 
c)viet x1^2+x2^2=(x1+x2)^2-2x1x2 
=2^2-2(m-1)=10 =>m=-2

10 tháng 3 2018

yheem đap an đi

26 tháng 2 2022

Thay x=3 vào pt ta có:

\(\dfrac{2}{x-m}-\dfrac{5}{x+m}=1\\ \Leftrightarrow\dfrac{2}{3-m}-\dfrac{5}{3+m}=1\\ \Leftrightarrow\dfrac{2\left(3+m\right)-5\left(3-m\right)}{\left(3-m\right)\left(3+m\right)}=1\\ \Rightarrow6+2m-15+5m=3^2-m^2\\ \Leftrightarrow-9+7m-9+m^2-0\\ \Leftrightarrow m^2+7m-18=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-9\end{matrix}\right.\)

29 tháng 1 2019

giúp vs ạ

29 tháng 1 2019

a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên

\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)

\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)

\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)

Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)

Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)

                   hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)

Theo đề \(x_1-x_2=m^2+2\left(3\right)\)

Lấy (1) + (3) theo từng vế được 

\(2x_1=m^2+2m+5\)

\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)

\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)

Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)

                \(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)

hmmm