\(^{x^2-2\left(n-1\right)x-n-3=0}\)

tìm m để phương trìn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2019

\(\Delta'=\left(n-1\right)^2+n+3=n^2-n+4=\left(n-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Phương trình luôn có 2 nghiệm pb

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(n-1\right)\\x_1x_2=-n-3\end{matrix}\right.\)

\(x_1^2+x_2^2=10\)

\(\Leftrightarrow x_1^2+x^2_2+2x_1x_2-2x_1x_2=10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow4\left(n-1\right)^2+2n+6=10\)

\(\Leftrightarrow2n^2-3n=0\Rightarrow\left[{}\begin{matrix}n=0\\n=\frac{3}{2}\end{matrix}\right.\)

23 tháng 4 2019

giải hộ với

Xét \(\Delta'=\left(n-1\right)^2+n+5=n^2-n+6=\left(n-\frac{1}{2}\right)^2+\frac{23}{4}>0\)

=> PT luôn có 2 nghiệm phân biệt với mọi n 

Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(n-1\right)\\x_1x_2=-n-5\end{cases}}\)

Ta có \(x_1^2+x_2^2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4\left(n-1\right)^2+2\left(n+5\right)=14\)

\(\Leftrightarrow4n^2-6n=0\)

\(\Leftrightarrow\orbr{\begin{cases}n=0\\n=\frac{3}{2}\end{cases}}\)

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

15 tháng 8 2018

\(\Delta'=\left(a-1\right)^2-\left(a^2+a-2\right)=-3a+3\)

Để phương trình có hai nghiệm \(x_1;x_2\) thì \(\Delta'\ge0\Leftrightarrow-3a+3\ge0\Leftrightarrow a\le1\)

Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(a-1\right)\\x_1.x_2=a^2+a-2\end{cases}}\)

Vậy thì \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(a-1\right)^2-2\left(a^2+a-2\right)\)

\(=2a^2-10a+8=2\left(a^2-5a+\frac{25}{4}\right)-\frac{9}{2}=2\left(a-\frac{5}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy  \(\text{min}P=-\frac{9}{2}\Leftrightarrow a=\frac{5}{2}.\)

16 tháng 8 2018

Bài giải : 

Δ'=(a−1)2−(a2+a−2)=−3a+3

Để phương trình có hai nghiệm x1;x2 thì Δ'≥0⇔−3a+3≥0⇔a≤1

Áp dụng hệ thức Viet ta có: {

x1+x2=2(a−1)
x1.x2=a2+a−2

Vậy thì P=x12+x22=(x1+x2)2−2x1.x2=4(a−1)2−2(a2+a−2)

=2a2−10a+8=2(a2−5a+254 )−92 =2(a−52 )2−92 

Với a≤1⇒P≥0

Vậy minP = 0 khi a = 1.

12 tháng 5 2017

Đề phương trình có nghiệm

=> \(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4>0\forall m\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1\cdot x_2=-m-3\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(m+3\right)=10\)

\(\Leftrightarrow4\left(m^2-2m+1\right)+2\left(m+3\right)=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6=10\)

\(\Leftrightarrow4m^2-6m=0\)

\(\Leftrightarrow m\left(4m-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\) (TM)

11 tháng 3 2020

a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0

                                                            \(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

                                                                  

12 tháng 3 2020

Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2

\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)

Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)

Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:

\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)

\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)

\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)

Bình phương hai vế:

\(100\left(1+2m^2\right)=36m^4+72m^2+36\)

\(\Leftrightarrow36m^4-128m^2-64=0\)

Đặt \(m^2=t\left(t\ge0\right)\)

Phương trình trở thành \(36t^2-128t-64=0\)

\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)

Vậy t = 4\(\Rightarrow m=\pm2\)

Vậy khi m =-2 hoặc 2 thì  phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)

Trả lời 

a) Delta phương trình đó rồi xét 2 trường hợp

b) phần à delta lên sẽ tìm được m rồi thế vào là xong

Chắc vậy không chắc cho nắm